A Reactive Strategy for High-Level Consistency During Search

R.J. Woodward^{1,2} B.Y. Choueiry¹ Christian Bessiere²

¹Constraint Systems Laboratory, University of Nebraska-Lincoln ²CNRS, University of Montpellier

Acknowledgements

- Experiments conducted at UNL's Holland Computing Center
- NSF Grant RI-111795, RI-1619344
- NSF GRF and Chateaubriand Fellowship
- ANR Demograph (ANR-16-CE40-0028) and Contredo (ANR-16-CE33-024)

Context

- Solving a Constraint Satisfaction Problem (CSP)
 - Conditioning: Backtrack search
 - Inference: Enforcing consistency
 - Consistency properties (e.g., GAC)
 - Constraint propagation algorithms
- Consistency during search
 - Constraint Programming solvers: GAC or weaker
 - CSP research: GAC or stronger
- Our focus: Higher-level consistency (HLC)

Lesson and Problem

- Maintaining consistency during search
 - Enforced at each variable instantiation
 - Prunes subtrees, reduces search space
- Stronger consistency
 - Filters more subtrees
 - But is costlier to enforce

AC

July 18, 2018

IJCAI 2018

5

Our solution

- **1. When: PREPEAK**
 - Monitors search performance
 - When search starts thrashing, triggers an HLC
 - Then, conservatively reverts to GAC
- 2. How much
 - Monitor propagation and interrupt before fixpoint

PREPEAK⁺ = **PREPEAK** + 'How Much'

PREPEAK examines #BT per depth

July 18, 2018

Empirical Evaluations

Thank You

Questions & Comments

Please stop by the poster #51

July 18, 2018

IJCAI 2018

Visualization of Benefit

pseudo-aim-200-1-6-4, dom/wdeg

IJCAI 2018

Visualization of Benefit

pseudo-aim-200-1-6-4, dom/wdeg

IJCAI 2018

Visualization of Benefit

PREPEAK A Reactive Strategy for HLC

- Keep track of $btcount[\cdot]$, number of backtrack during search
- When $btcount[\cdot]$ reaches a given threshold θ
 - Enforce GAC then HLC as long as HLC yields domain wipeout for all values in domain of current variable
 - If backtrack, reduce threshold and keep enforcing HLC
 - If HLC finds a consistent value, reset $btcount[\cdot]$, increase threshold a little
 - If GAC finds a consistent value, reset $btcount[\cdot]$, increase threshold a lot
- Geometric laws to update threshold
 - Wipeout: $\theta_{k+1}^{bt} \leftarrow r_w \cdot \theta_k^{bt}, r_w = 1.2^{-1}$
 - Filtering: $\theta_{k+1}^{bt} \leftarrow r_f \cdot \theta_k^{bt}, r_f = 1.2^2$

- No filtering:
$$\theta_{k+1}^{bt} \leftarrow r_n \cdot \theta_k^{bt}, r_n = 1.2^3$$

275