Improving the Performance of Consistency Algorithms by Localizing and Bolstering Propagation in a Tree Decomposition

Shant Karakashian, Robert Woodward & Berthe Y. Choueiry

Constraint Systems Laboratory University of Nebraska-Lincoln

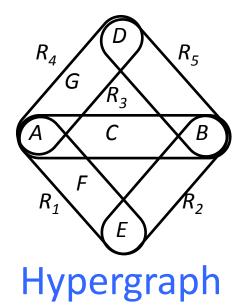
Acknowledgments:

- Experiments conducted at UNL's Holland Computing Center
- NSF Award RI-111795

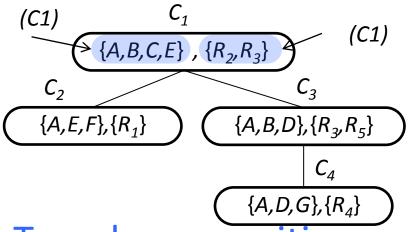
Outline

- Introduction
- Background
 - Tree decomposition
 - Relational consistency property R(*,m)C
- Key ideas
 - Localize consistency to clusters of a tree decomposition
 - Bolstering propagation at separators
- Evaluation
 - Theoretical: Comparing resulting consistency properties
 - Empirical: Solving CSPs in a backtrack-free manner
- Conclusions & Future Work

Introduction

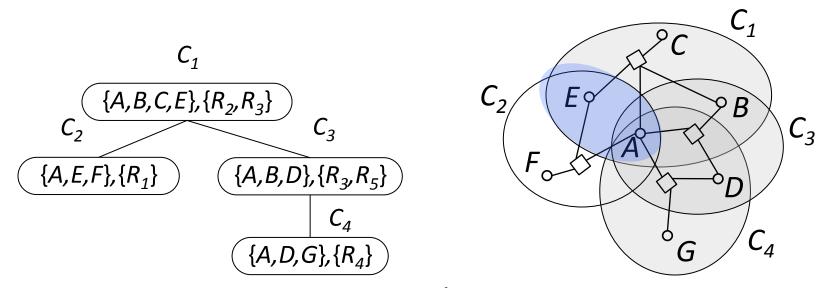

- Constraint Satisfaction Problems (CSPs)
 - NP-complete in general
 - Islands of tractability are classes of CSPs solvable in polynomial time
- One tractability condition links

[Freuder 82]


- Consistency level to
- Width of the constraint network, a structural parameter
- Our approach: exploit a tree decomposition
 - Localize application of the consistency algorithm
 - Add redundant constraints at separators to enhance propagation
 - Practical tractability aims to solve CSP instances in a backtrack-free manner

Tree Decomposition

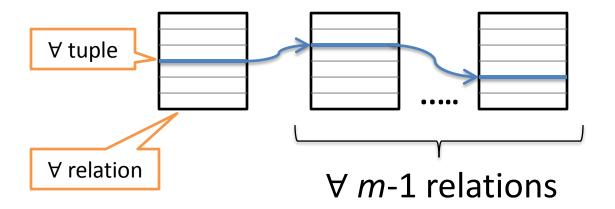
- A tree decomposition: $\langle \mathcal{T}, \rangle$
 - \mathcal{T} : a tree of clusters
 - : maps variables to clusters
 - : maps constraints to clusters


- Conditions
 - Each constraint appears in at least one cluster with all the variables in its scope
 - For every variable, the clusters where the variable appears induce a connected subtree

Tree decomposition

Tree Decomposition: Separators

 A separator of two adjacent clusters is the set of variables associated to both clusters

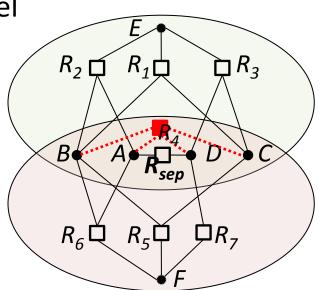


- Width of a decomposition/network
 - Treewidth = maximum number of variables in clusters 1

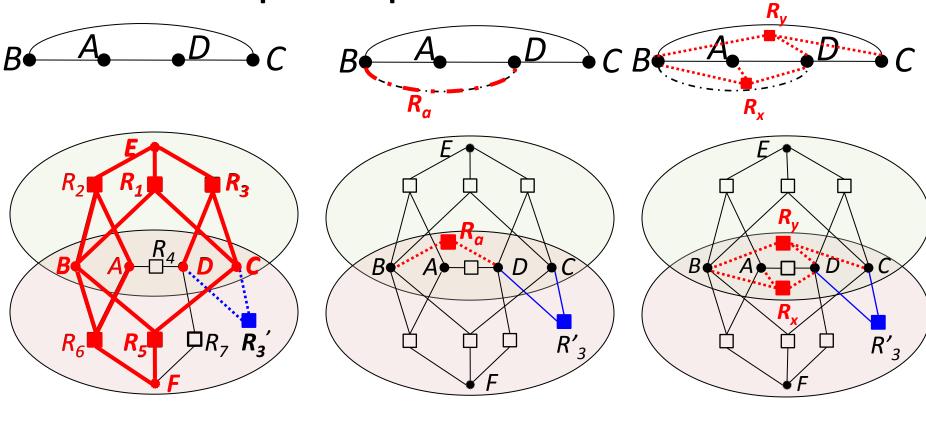
Relational Consistency Property R(*,m)C

• A CSP is R(*,m)C iff

- [Karakashian+ AAAI 10]
- Every tuple in a relation can be extended
- to the variables in the scope of any (m-1) other relations
- in an assignment satisfying all m relations simultaneously
- $R(*,m)C \equiv Every set of m relations is minimal$


Localize Consistency

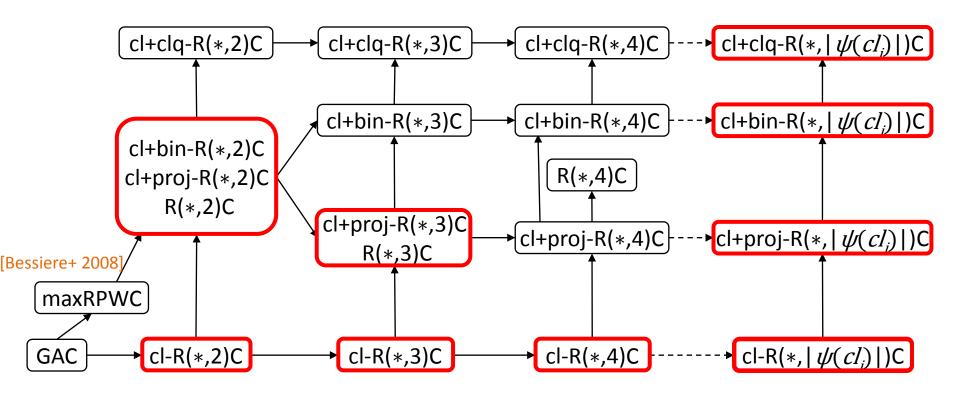
- Restricting R(*,m)C to clusters: cl-R(*,m)C
- Two clusters communicate via their separator
 - Constraints common to the two clusters
 - Domains of variables common to the two clusters



Bolstering Propagation at Separators

- Localization cl-R(*,m)C
 - Fewer combinations of m relations
 - Reduces the enforced consistency level
- Ideally: add unique constraint
 - Space overhead, major bottleneck
- Enhance propagation by bolstering
 - Projection of existing constraints
 - Adding binary constraints
 - Adding clique constraints

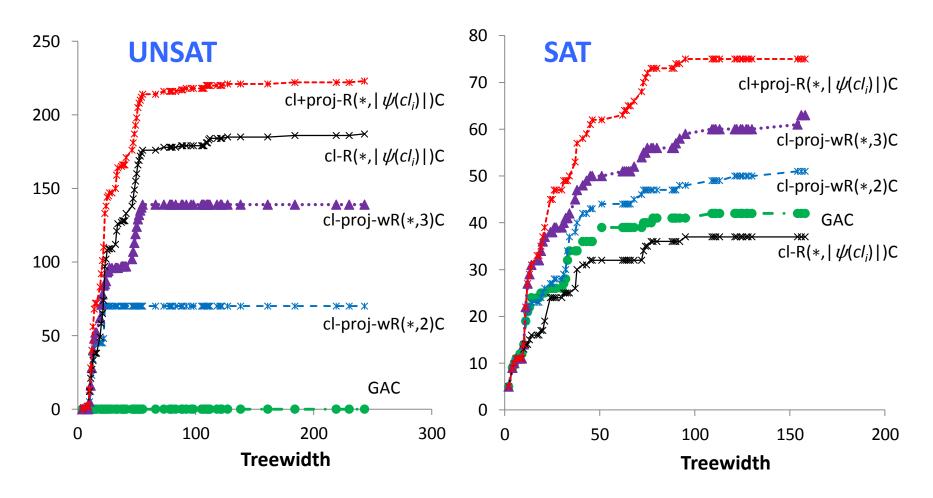
Bolstering Schemas: Approximate Unique Separator Constraint



Projection cl+proj-R(*,m)C

Binary constraints cl+bin-R(*,m)C

Clique constraints cl+clq-R(*,m)C


Resulting Consistency Properties

Empirical Evaluations

+ maxRPWC, <i>m</i> =3,4			wR(*,2)C					R(*, (cl _i))C			
	#inst.	GAC	global	local	Proj.	binary	clique	local	Proj.	binary	clique
Completed	UNSAT	167	170	167	172	169	162	285	286	282	271
	479	34.9%	35.5%	34.9%	35.9%	35.3%	33.8%	59.5%	59.7%	58.9%	56.6%
	SAT	174	179	178	176	169	104	152	138	124	113
8	200	87.0%	89.5%	89.0%	88.0%	84.5%	52.0%	76.0%	69.0%	62.0%	56.5%
BT-Free	UNSAT	0	70	39	70	70	74	187	223	223	213
	479	0.0%	14.6%	8.1%	14.6%	14.6%	15.4%	39.0%	46.6%	46.6%	44.5%
	SAT	44	55	37	53	52	38	39	77	71	58
	200	22.0%	27.5%	18.5%	26.5%	26.0%	19.0%	19.5%	38.5%	35.5%	29.0%
Min(#NV)	UNSAT	17	73	43	72	72	77	220	249	248	239
	479	3.5%	15.2%	9.0%	15.0%	15.0%	16.1%	45.9%	52.0%	51.8%	49.9%
	SAT	47	64	37	62	61	39	83	111	100	79
2	200	23.5%	32.0%	18.5%	31.0%	30.5%	19.5%	41.5%	<u>55.5%</u>	50.0%	39.5%
Fastest	UNSAT	72	13	35	5	1	1	176	108	42	37
	479	15.0%	2.7%	7.3%	1.0%	0.2%	0.2%	36.7%	22.5%	8.8%	7.7%
	SAT	121	45	47	23	14	12	34	18	13	12
	200	60.5%	22.5%	23.5%	11.5%	7.0%	6.0%	17.0%	9.0%	6.5%	6.0%

Cumulative Count of Instances Solved w/o Backtracking

Acknowledgment: Charts suggested by Rina Dechter

Conclusions & Future Work

- Adapted R(*,m)C to a tree decomposition of the CSP
 - Localizing R(*,m)C to the clusters
 - Bolstering separators to strengthen the enforced consistency
- Directions for future work
 - -R(*,m)C on non-table constraints via domain filtering
 - Automating the selection of a consistency property
 - Inside clusters
 - During search
 - Modify the structure of a tree decomposition to improve performance (e.g., merging clusters [Fattah & Dechter 1996])

Thank You for Your Attention