
Constraint Systems Laboratory

Daniel J. Geschwender1,2 R.J. Woodward1,2 B.Y. Choueiry1,2 S. D. Scott2

1Constraint Systems Laboratory
2Department of Computer Science and Eng.

University of Nebraska-Lincoln

A Portfolio Approach
for Enforcing Minimality
in a Tree Decomposition

9/3/16 CP 2016 1

Acknowledgements
•  Experiments conducted at UNL’s Holland Computing Center
•  Geschwender supported by a NSF Graduate Research Fellowship Grant No. 1041000
•  NSF Grants No. RI-111795 and RI-1619344

Constraint Systems Laboratory

9/4/16 CP 2016 2

Daniel Geschwender
•  3rd year PhD student at University

of Nebraska – Lincoln’s
Constraint Systems Laboratory

•  Studying high level relational
consistencies and automated
techniques for determining when
to apply them

•  Always ready to play a board
game!

Constraint Systems Laboratory

9/3/16 CP 2016 3

We advocate the use of an
•  for enforcing
•  on the of a tree decomposition
•  during in a backtrack search for

solving CSPs

Claim: Cluster-level portfolio

Constraint Systems Laboratory

Outline
•  Background

–  Minimality: property and algorithms (ALLSOL, PERTUPLE)
–  Minimality in a tree decomposition

•  Processing clusters: FILTERCLUSTERS
–  GAC interleave
–  Cluster-level portfolio
–  Cluster-processing timeout

•  Training the classifier
•  Experiments
•  Conclusion

9/3/16 CP 2016 4

Constraint Systems Laboratory

Background: Minimality
•  Global consistency property
•  Every tuple in a relation can be extended to a

full solution over the m relations

9/3/16 CP 2016 5

∀ m-1 relations

..…
�!tuple!

�!rela)on!

Constraint Systems Laboratory

Background: ALLSOL/PERTUPLE

ALLSOL
•  One search explores the

entire search space
•  Finds all solutions without

storing them, keeps tuples
that appear in at least one
solution

•  Better when there are
many ‘almost’ solutions

9/3/16 CP 2016 6

t1

ti
t2

t3

[Karakashian, PhD 2013]

Constraint Systems Laboratory

Background: ALLSOL/PERTUPLE

PERTUPLE
•  For each tuple, finds one

solution where it appears
•  Many searches that stop

after the first solution
•  Better when many

solutions are available

9/3/16 CP 2016 7

t1

ti
t2

t3

[Karakashian, PhD 2013]

Constraint Systems Laboratory

Background: Tree decomposition, minimality

9/3/16 CP 2016 8

•  Minimality on clusters [Karakashian+ AAAI 2013]
–  Build a tree decomposition
–  Localize minimality to clusters
–  During search, after a variable instantiation

•  Enforce minimality on clusters
•  Propagate following tree structure

•  FILTERCLUSTERS implements three
improvements
–  GAC interleave
–  Cluster-level portfolio
–  Cluster-processing timeout

Constraint Systems Laboratory

FILTERCLUSTERS: GAC interleave
•  It is often beneficial to run a lightweight

algorithm (e.g., GAC) prior to running a more
costly algorithm

•  We extend this idea and interleave a global
GAC run between the processing of clusters

9/3/16 CP 2016 9

Minimality GAC Minimality

Constraint Systems Laboratory

FILTERCLUSTERS: Cluster-level portfolio
•  Performance of ALLSOL and PERTUPLE vary
•  Sometimes both algorithms are too costly
•  Use algorithm portfolio on the cluster level

–  Different algorithms on different clusters
–  Different algorithms on the same cluster during

propagation

9/3/16 CP 2016 10

‘AllSol’

‘PerTuple’ t1

ti
t2

t3

‘Neither’

Constraint Systems Laboratory

FILTERCLUSTERS: Cluster timeout

•  Limits the time for processing a single
cluster

•  Allows recovery from a poor
classification

•  When interrupted, partial results of
–  PERTUPLE yield useful filtering
–  ALLSOL are useless

9/3/16 CP 2016 11

Constraint Systems Laboratory

Classifier Training: Data
•  9362 individual clusters taken from 175

benchmarks
•  For each cluster instance i, collected

–  The values of 73 classification features
–  The runtime of ALLSOL: allSol(i)
–  The runtime of PERTUPLE: perTuple(i)

9/3/16 CP 2016 12

Constraint Systems Laboratory

Classifier Training: Labels

9/3/16 CP 2016 13

 1

 10

 100

 1000

 10000

 100000

 1x106

 1 10 100 1000 10000 100000 1x106

P
E

R
T

U
P

L
E
 T

im
e
 (

m
se

c)

ALLSOL Time (msec)

Runtime of All Instances

‘PerTuple’

‘Neither’

‘AllSol’ No Yes

Yes

allSol(i)>10 min &
perTuple(i)>10 min

‘AllSol’ ‘Neither’ ‘PerTuple’

Start

allSol(i)>perTuple(i)
No

Constraint Systems Laboratory

Classifier Training: Weights
•  Weight of a training instance i, weight(i)

•  Designed to emphasize instance with both a
–  large proportional difference
–  large absolute difference

9/3/16 CP 2016 14

weight(i) =

(
w(allSol(i), perTuple(i)) label(i) =‘AllSol’k‘PerTuple’

20 label(i) =‘Neither’

w(a, p) =

⇠����log10
✓
a

p

◆���� · |log10 (|a� p|+ 0.01)|
⇡

weight(i) =

(
w(allSol(i), perTuple(i)) label(i) =‘AllSol’k‘PerTuple’

20 label(i) =‘Neither’

w(a, p) =

⇠����log10
✓
a

p

◆���� · |log10 (|a� p|+ 0.01)|
⇡

|a� p|

a

p

Constraint Systems Laboratory

Classifier Training: Features
•  CSP parameters

–  #variables, #constraints, #values, #tuples
–  Constraint arity, constraint tightness
–  Relational linkage

•  Graph parameters: on dual, primal, and incidence graph
–  Density
–  Degree
–  Eccentricity
–  Clustering coefficient

•  Using several descriptive statistics
–  min, max, mean, coefficient of variation, entropy

9/3/16 CP 2016 15

Constraint Systems Laboratory

Classifier Training: Decision tree
•  We built a decision tree classifier using the J48

algorithm from the Weka machine learning
software

•  Decision tree selected for:
–  Simplicity
–  Fast evaluation time
–  Only requires collection a subset of the features

9/3/16 CP 2016 16

Constraint Systems Laboratory

Experiments: Set up
•  Used 1055 instances from 42 benchmarks
•  Backtrack search, dynamic dom/deg ordering
•  Intel Xeon E5-2650 v3 2.30GHz processors with

12 GB memory
•  2 hours total time out per instance
•  Compared GAC and six strategies (variants of

FILTERCLUSTERS)

9/3/16 CP 2016 17

Constraint Systems Laboratory

Experiments: Tested strategies

9/3/16 CP 2016 18

Constraint Systems Laboratory

Experiments: Results

9/3/16 CP 2016 19

G
A

C

A
LL

SO
L

PE
R

TU
PL

E

A
LL

SO
L+

PE
R

TU
PL

E+

R
A

N
D

O
M

D
EC

TR
EE

In
st

an
ce

s
C

om
pl

et
ed

550 472 567 514 633 643 685

Av
er

ag
e

Ti
m

e
(s

)

2,471 3,075 2,081 2,789 1,622 1,427 1,121

Constraint Systems Laboratory

Conclusions
•  A cluster-level portfolio, during lookahead

–  Is not only feasible, but also highly competitive

•  Enforcing a timeout on consistency algorithms
–  Prevents getting stuck on one part of the problem
–  Does not affect soundness

•  Future work
–  Dynamically determine timeout based on the

anticipated amount of filtering
–  Heuristics for ordering the clusters

9/3/16 CP 2016 20

Constraint Systems Laboratory

Thank you

Questions?

9/3/16 CP 2016 21

Constraint Systems Laboratory

9/3/16 CP 2012 22

Constraint Systems Laboratory

9/3/16 CP 2012 23

Constraint Systems Laboratory

Classifier Training: Evaluation
•  Using 10-fold cross validation
•  Using both weighted and un-weighted instances

9/3/16 CP 2016 24

Constraint Systems Laboratory

FILTERCLUSTERS

9/3/16 CP 2016 25

Repeat until quiescence

For cluster C in LIST!

Reverse LIST!

Build cluster LIST !

Enforce GAC globally

Enforce GAC globally

Classify C ‘PerTuple’
t1

ti
t2

t3

‘AllSol’

‘Neither’

Process C within time limit

?

Constraint Systems Laboratory

Experiments: Tested strategies (2)

9/3/16 CP 2016 26

 1

 10

 100

 1000

 10000

 100000

 1x106

 1 10 100 1000 10000 100000 1x106

P
E

R
T

U
P

L
E
 T

im
e

 (
m

se
c)

ALLSOL Time (msec)

Runtime of All Instances

1 second cutoff per cluster

Constraint Systems Laboratory

Experiments: Results (2)

 0

 100

 200

 300

 400

 500

 600

 700

 0.01 0.1 1 10 100 1000

C
o
m

p
le

te
d
 I
n
st

a
n
ce

s

Runtime (sec)

Instance Completions by Runtime

DECTREE

RANDOM

PERTUPLE
+

GAC

PERTUPLE

ALLSOL
+

ALLSOL

9/3/16 CP 2016 27

Constraint Systems Laboratory

Background: Tree decomposition, minimality

9/3/16 CP 2016 28

•  Build a tree
decomposition

•  Localize the enforcement
of minimality to the
clusters

•  Process clusters in
MAXCLIQUES order back
and forth to quiescence

A
B

C

E

D

F

G

H

I

J

K
M

L

N

C1

C2

C7

C3

C4

C5

C6

C8

C9
C10

