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We advocate the use of an  
•  for enforcing  
•  on the  of a tree decomposition 
•  during  in a backtrack search for 

solving CSPs

Claim: Cluster-level portfolio
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Outline
•  Background

–  Minimality: property and algorithms (ALLSOL, PERTUPLE)
–  Minimality in a tree decomposition

•  Processing clusters: FILTERCLUSTERS
–  GAC interleave
–  Cluster-level portfolio
–  Cluster-processing timeout

•  Training the classifier
•  Experiments
•  Conclusion
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Background: Minimality
•  Global consistency property
•  Every tuple in a relation can be extended to a 

full solution over the m relations
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Background: ALLSOL/PERTUPLE

ALLSOL
•  One search explores the 

entire search space
•  Finds all solutions without 

storing them, keeps tuples 
that appear in at least one 
solution

•  Better when there are 
many ‘almost’ solutions

9/3/16 CP 2016 6 

t1 

ti 
t2 

t3 

[Karakashian, PhD 2013]



Constraint Systems Laboratory 

Background: ALLSOL/PERTUPLE

PERTUPLE
•  For each tuple, finds one 

solution where it appears
•  Many searches that stop 

after the first solution
•  Better when many 

solutions are available
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Background: Tree decomposition, minimality
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•  Minimality on clusters [Karakashian+ AAAI 2013]
–  Build a tree decomposition
–  Localize minimality to clusters
–  During search, after  a variable instantiation

•  Enforce minimality on clusters
•  Propagate following tree structure

•  FILTERCLUSTERS implements three 
improvements
–  GAC interleave
–  Cluster-level portfolio
–  Cluster-processing timeout
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FILTERCLUSTERS: GAC interleave 
•  It is often beneficial to run a lightweight 

algorithm (e.g., GAC) prior to running a more 
costly algorithm

•  We extend this idea and interleave a global 
GAC run between the processing of clusters
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FILTERCLUSTERS: Cluster-level portfolio
•  Performance of ALLSOL and PERTUPLE vary
•  Sometimes both algorithms are too costly
•  Use algorithm portfolio on the cluster level 

–  Different algorithms on different clusters
–  Different algorithms on the same cluster during 

propagation
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FILTERCLUSTERS: Cluster timeout

•  Limits the time for processing a single 
cluster

•  Allows recovery from a poor 
classification 

•  When interrupted, partial results of
–  PERTUPLE yield useful filtering
–  ALLSOL are useless
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Classifier Training: Data
•  9362 individual clusters taken from 175 

benchmarks
•  For each cluster instance i, collected

–  The values of 73 classification features
–  The runtime of ALLSOL: allSol(i) 
–  The runtime of PERTUPLE: perTuple(i) 
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Classifier Training: Labels
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Classifier Training: Weights
•  Weight of a training instance i, weight(i) 

•  Designed to emphasize instance with both a 
–  large proportional difference
–  large absolute difference
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Classifier Training: Features
•  CSP parameters

–  #variables, #constraints, #values, #tuples
–  Constraint arity, constraint tightness
–  Relational linkage

•  Graph parameters: on dual, primal, and incidence graph
–  Density
–  Degree
–  Eccentricity
–  Clustering coefficient

•  Using several descriptive statistics
–  min, max, mean, coefficient of variation, entropy
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Classifier Training: Decision tree
•  We built a decision tree classifier using the J48 

algorithm from the Weka machine learning 
software

•  Decision tree selected for:
–  Simplicity
–  Fast evaluation time
–  Only requires collection a subset of the features
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Experiments: Set up
•  Used 1055 instances from 42 benchmarks
•  Backtrack search, dynamic dom/deg ordering
•  Intel Xeon E5-2650 v3 2.30GHz processors with 

12 GB memory
•  2 hours total time out per instance
•  Compared GAC and six strategies (variants of 

FILTERCLUSTERS)
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Experiments: Tested strategies
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Experiments: Results
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Conclusions
•  A cluster-level portfolio, during lookahead 

–  Is not only feasible, but also highly competitive

•  Enforcing a timeout on consistency algorithms  
–  Prevents getting stuck on one part of the problem 
–  Does not affect soundness 

•  Future work 
–  Dynamically determine timeout based on the 

anticipated amount of filtering 
–  Heuristics for ordering the clusters 
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Thank you

Questions?
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Classifier Training: Evaluation
•  Using 10-fold cross validation
•  Using both weighted and un-weighted instances
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FILTERCLUSTERS
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Repeat until quiescence

For cluster C in LIST!

Reverse LIST!

Build cluster LIST !

Enforce GAC globally

Enforce GAC globally

Classify C ‘PerTuple’ 
t1 

ti 
t2 

t3 

‘AllSol’ 

‘Neither’ 

Process C within time limit

?
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Experiments: Tested strategies (2)
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Experiments: Results (2)
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Background: Tree decomposition, minimality
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•  Build a tree 
decomposition

•  Localize the enforcement 
of minimality to the 
clusters

•  Process clusters in 
MAXCLIQUES order back 
and forth to quiescence 
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