A Reactive Strategy for
High-Level Consistency During Search

R.J.Woodward*? B.Y.Choueiry* C.Bessiere?

‘Constraint Systems Laboratory ¢ University of Nebraska-Lincoln ¢ USA
°CNRS ¢ Universite de Montpellier ¢ France

1. Background: Local Consistency 4, PREPEAK”
Variables: A,B,C D el e When | o N
_ NN 30,000 +
Domains: {1,2} / en | I,
With: A=B,B=C, A+ C</4 A C E
{(A1). (B.1) (C.1)}isasolution (€1€2> (P19 s 12
Generalized Arc Consistency (GAC) ensures a value In A TR
the domain of a variable in the scope of a relation can be
: : : S h
extended to a tuple satisfying the relation @;jﬁ;@
E.g., all values are GAC |
Reset all btcounts|-] § Keeping track of number of -
Singleton Arc Consistency (SAC) removes 2 from Maintain GAC backtracks at depth d: btcounts[d]
domains of A B, C Maintain GAC
SAC Is an example of a High Level Consistency (HLC) .
O
: : : Yes ﬂraek? btcounts[d] = Mo
Enforcing consistency during search
* The higher the consistency level, the stronger the pruning
Enforce HLC, based on HLC's filtering
and the smaller the search Space || * Wipeout: decrease ¢ | Maintain GAC until search backtracks
e However HLC can be COStly in time and Space e Some: increase ¢ to a depth shallower than d
’ None: increase 6 a lot
2. Our View
How Much Terminate HLC as soon as elther:
The challenge is decide when, where, and how much e Half the propagation queue is processqed or
HLC to enforce during search * HLC has consumed a total CPU time 3 -TIME(GAC)
— -Where? - How much? PREPEAK* = PREPEAK + ‘How Much’
Entire CSP One variable
: -When? , Where?
Always HLC Always GAC / 5. Empirical Evaluations
— How much? -
Until fixpoint Stop early HLC ~ - When? 2200 PR EPEAKT
2150 L APOAC
: —-GAC
3. Our Solution
PREPEAK*, a simple and effective reactive strategy that 2050 |2 e
. Z - ,--: JJJJJ o~
 Monitors search performance 2000 | T e
- i 2 7
* \When search starts thrashing, triggers an HLC %0 & o
: 4
» Then, conservatively reverts to GAC = Y
| /
We validate PREPEAK* . /
. ’ il
. WI'Fh POAC as HLC (str_onger than SAC) [Bennaceur+ CP 2001] . i CPU Time [sec] Using dom/deg
e Using the APOAC algorithm [Balafrej+ AAAI 2014] T 50 a0 900 1200 1500 1800 2000 2400 2700 3000 3300 3600
bseudo-aim-200-1-6-4, dom/wdeg 6. Visualization [Howell+ xAl 2018]
35,000 GAC 35,000 APOAC 60 35,000 PREPEAK+ 60
10 000 CPU Time: 140.81 sec. 10000 - CPU Time: 23.77 sec. 10 000 CPU Time: 12.06 sec.
| #NV: 3,978,074 . E #NV: 59,181 0 #NV: 284,289 - 30
25.000 #BT: 3,348,330 25.000 § y .+:-— #BT: 53,212 25.000 #BT: 238,833
2 E Wy M #Calls POAC: 11,142 Z 2 #Calls POAC: 228 2 v
Z S o el s - S -
20,000 8 20,000 - ML -~ 20,000 = a
= £ NI —#BTs £ 3 —4BTs £
15.000 "8 R T - 11— Filter 1 - Filter =
* —#BTs 18] . O * . O
10,000 10,000 - ‘5.:f5§? No Filter =| % 10,000 NO Filter = 20
Wipeout Wipeout
S Depth 0 ':,”lwmmééﬁ‘#ﬂu”'Depth 0 oi"-n¢f:::¥-r?"¥—Depth 0

Experiments conducted on equipment of Holland Computing Center (UNL)
Research support:
NSF Grants No. RI-111795 and RI-1619344
NSF Graduate Research Fellowship Grant N0.1041000 and Chateaubriand Fellowship (R.J. Woodward)
ANR projects Demograph (ANR-16-CE40-0028) and Contredo (ANR-16-CE33-0024) (C. Bessiere)

Nebraska

Lincoln

IJCAI 2018. July 9, 2018

	Slide Number 1

