Cycle-Based Singleton Local Consistencies R.J.Woodward^{1,2}, B.Y.Choueiry¹, and C.Bessiere² ¹Constraint Systems Laboratory • University of Nebraska-Lincoln • USA ²LIRMM-CNRS • University of Montpellier • France

Motivation High-level consistency effectively prune search space but can be costly

Contributions

- 1. Exploit cycles in the constraint network of a Constraint Satisfaction Problem (CSP) to vehicle constraint propagation
- 2. Focus: Enforce POAC on a Minimum Cycle Basis (MCB) of the incidence graph of the CSP

3. Localizing POAC

Union-Cycle POAC (\cup_{cyc} POAC): restrict the singleton test to the neighborhood of a variable and to the union of the MCB cycles in which the variable appears.

Algorithm derived from POAC-1 [Balafrej+ AAAI 2014]

Start POAC-1 Order variables by increasing dom/wdeg Start at first variable

3. Empirically show benefit

1. Local Consistency

Variables: { x_1 , x_2 , x_3 , x_4 , x_5 , x_6 } Domains: { v_0 , v_1 , v_2 , v_3 } for x_1 , x_2 , x_3 ; { v_1 , v_2 } for x_4 , x_5 , x_6 Constraints:

R_{12}		R_{13}		R_{14}			R_{23}			R_{34}			R_{156}		
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₃	<i>x</i> ₁	<i>x</i> ₄		<i>x</i> ₂	<i>x</i> ₃		<i>x</i> ₃	<i>x</i> ₄		x_1	<i>x</i> ₅	<i>x</i> ₆
v_0	v_0	v_0	v_0	v_0	v_1		v_0	v_1		v_0	v_1		v_0	v_1	v_1
v_1	v_1	v_1	v_1	v_1	v_1		v_1	v_0		v_1	v_1		v_1	v_1	v_1
v_2	v_2	v_1	v_3	v_1	v_2		v_1	v_2		v_1	v_2		v_2	v_2	v_2
<i>v</i> ₃	v_1	v_2	v_2	v_2	v_1		v_1	<i>v</i> ₃		v_2	v_1		v_3	v_3	v_3
<i>v</i> ₃	v_2	v_2	v_3	v_2	v_2		v_2	v_1		v_2	v_2				
		v_3	v_1	v_3	v_2		v_2	v_3		v ₃	v_2				
		v_3	v_2			_ '			_ '			-			
		v_3	v_3												

Generalized Arc Consistency (GAC) ensures a value in the domain of a variable in the scope of a relation can be extended to a tuple satisfying the relation.

E.g., v_3 can be removed from x_2

Singleton Arc Consistency (SAC) ensures that the CSP remains arc consistent after assigning a value to a variable. E.g., v_0 can be removed from x_1, x_2, x_3

A constraint network $\mathcal{P} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ is **Partition-One Arc-Consistent** (POAC) iff \mathcal{P} is SAC and for all $x_i \in \mathcal{X}$, for all $v_i \in \text{dom}(x_i)$, for all $x_i \in \mathcal{X}$, there exists $v_i \in \text{dom}(x_i)$ such that $(x_i, v_i) \in AC(\mathcal{P} \cup \{x_i \leftarrow v_i\})$ [Bennaceur and Affane CP 2001] E.g., v_1 can be removed from x_4 because there is no such v_i for x_1 where $(x_4, v_1) \in AC(\mathcal{P} \cup \{x_1 \leftarrow v_i\})$.

2. Minimum Cycle Basis

Computed on incidence graph, bipartite graph G = $(\mathcal{X}, \mathcal{C}, E)$ \mathcal{X} : variables, \mathcal{C} : constraints, E: link c_i and $x_i \in scope(c_i)$

All cycles

4. Empirical Evaluations

Benchmark	X	GAC	POAC U	J _{cyc} POACQ	APOAC	AU _{cyc} POACQ						
Adaptive POAC the best												
TSP-25	# solv	15	14	15	15	15						
(# inst 15)	$\Sigma CPU(s)$	4,303.12	>41,382.27	32,654.67	6,152.91	2,418.41						
cril	# solv	6	7	7	8	8						
(# inst 8)	$\Sigma CPU(s)$	>30,458.10	>16,282.45	>16,651.04	2,321.96	1,831.60						
QWH-20	# solv	10	10	10	10	10						
(# inst 10)	$\Sigma CPU(s)$	2,256.61	6,154.43	3,007.98	2,236.32	2,061.63						
k-insertions	# solv	17	17	18	18	18						
(#inst 32)	$\Sigma CPU(s)$	>17,034.30	>21,639.31	11,814.83	6,129.92	8,940.59						
Non-adaptive POAC the best												
mug	# solv	6	6	8	6	6						
(# inst 8)	$\Sigma CPU(s)$	>54,724.38	>29,385.02	13,655.87	>34,207.98	>41,583.97						
GAC the best												
TSP-20	# solv	15	15	15	15	15						
(# inst 15)	$\Sigma CPU(s)$	302.21	2,750.90	3,096.07	593.04	384.13						
renault	# solv	50	50	50	50	50						
(# inst 50)	$\Sigma CPU(s)$	55.87	277.74	176.28	196.04	155.88						
myciel	# solv	13	12	12	13	13						
(# inst 16)	$\Sigma CPU(s)$	1,711.93	>21,564.06	>26,196.15	3,118.86	2,555.54						

A **Minimum Cycle Basis** (MCB): a cycle \in MCB cannot be obtained by symmetric difference from other cycles \in MCB

5. Future Research

Extend approach to other high-level consistency algorithms

Experiments were conducted on the equipment of the Holland Computing Center at the University of Nebraska-Lincoln. R.J. Woodward was supported by a National Science Foundation (NSF) Graduate Research Fellowship Grant No.1041000 and Chateaubriand Fellowship. Supported by NSF Grants No. RI-111795 and RI-1619344.

AAAI 2017 Student Abstract. February 1st, 2017