
Because the localized R(*,m)C does not consider combinations of 

relations across clusters, propagation between clusters is hindered. 

Synthesizing a global constraint at each separator improves the 

‘communication’ between clusters and guarantees backtrack-free 

search.  Synthesizing & storing those global constraints is typically 

prohibitive, especially for space. We approximate the global 

constraints by adding redundant constraints at the separators. We 

propose the following strategies: (1) Adding clusters’ constraints to 

the separator by projecting them on separator’s variables; (2) 

Adding binary constraints to the separator for every fill-in edge 

obtained by a triangulation of the separator’s primal graph; and (3) 

Adding non-binary constraints to the separator that cover the 

maximal cliques of a triangulation of the separator’s primal graph. 

 

 

The dual graph of a CSP is a graph whose vertices represent the 

constraints of the CSP, and whose edges connect two vertices 

corresponding to constraints whose scopes overlap 
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1. A new relational consistency property R(*,m)C that does not 

change the topology of the constraint graph [Karakshian+, AAAI 2010] 

2. Two algorithms for enforcing R(*,m)C 

3. Localizing R(*,m)C by restricting it to the clusters of a tree 

decomposition 

4. Bolstering  propagation between clusters by adding new 

constraints at the separators 

5. Empirical evidence of practical tractability on benchmark problems 

Contributions 

Relational Consistency 

Localizing R(*,m)C  
 Instead of computing the combinations of m constraints over the 

entire CSP, we restrict ourselves to the combinations computed 

within each cluster, thus reducing the number of combinations to 

be considered. 

Bolstering Propagation at Seperators 

Future Research Directions 

Tree Decomposition 

• Identify problem parameters to select the appropriate consistency 

for each problem or even for each cluster in a decomposition. 

• Validate the approach in the context of solution counting. 
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• Number of combinations = O(em)  

• Size of each combination = m 

• Twelve combinations for R(*,3)C 
1. {R1,R2,R3} 

2. {R1,R2,R4} 

3. {R1,R2,R5} 

4. {R1,R2,R6} 

5. {R1,R3,R4} 

6. {R1,R4,R5} 

7. {R1,R4,R6} 

8. {R1,R5,R6} 

9. {R1,R5,R7} 

10.{R1,R6,R7} 

11.{R2,R3,R4} 

12.{R5,R6,R7} 

R4 R7 R3 R6 

R2 R1 R5 R(*,m) ensures that subproblem 

induced in the dual CSP by every 

connected combination of m relations 

is minimal [Karakshian+, AAAI 2010] 
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A tree decomposition of a CSP is a tree embedding of the 

constraint network of the CSP.  The tree nodes are thus clusters of 

variables and constraints.  A tree decomposition must satisfy two 

conditions: (1) each constraint appears in at least one cluster and the 

variables in its scope must appear in this cluster, and (2) for every 

variable, the clusters where the variable appears induce a connected 

subtree.  A separator of two adjacent clusters is the set of variables in 

both clusters.  A given tree decomposition is characterized by its 

treewidth, which is the maximum number of variables in a cluster 

minus one. 
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Bolstering Separators 
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Empirical Results 
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Comp. 296 267 333 288 227 335 334 356 201 336 303 330 189 347 349 

Fastest 125 45 43 44 3 17 46 11 2 15 10 3 3 84 26 

BTF 70 111 158 89 160 193 147 235 161 235 147 245 159 214 306 

• Localized R(*,m)C results in weaker filtering but faster consistency 

algorithm which is useful where the full power of R(*,m)C is not 

needed. 

• Bolstering separators with projected relations results in stronger 

consistency, solving many more instances in a backtrack-free 

manner. 

• Bolstering separators with binary relations did not reduce #NV. 

• Bolstering separators with maximal clique relations further 

strengthened filtering and solved yet more instances backtrack-

free. However, processing the new non-binary relations increased 

cost. Consequently, many problems could not be solved within 2 

hours.  

Experiments were conducted on the equipment of the Holland Computing Center at the University of Nebraska-Lincoln. 

This research is supported by NSF Grant No. RI-111795. 
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Dual graph Constraint hypergraph 

Binary relations Max cliques relations 

Initial relations Global relation at separator 

Projecting clusters’ relations on 

separator’s variables 
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R(*,2)C 

cl+projsep-R(*,2)C 

cl-R(*,3)C 

cl+clqsep-R(*,3)C 

cl-R(*,4)C 

cl+clqsep-R(*,4)C cl+clqsep-R(*,2)C 

R(*,4)C 

cl+projsep-R(*,4)C 

Cl-R(*,|C|)C 

cl+projsep-R(*,|C|)C R(*,3)C 

cl+projsep-R(*,3)C 

cl-R(*,2)C 

Comparing Consistency Properties 


