
•  853 instances from the 2008 CP Solver Competition.
•  Real full lookahead cl+proj-wR(*,m)C, which enforces

R(*, m)C on each cluster, adds projection of constraints
to cluster separators to bolster propagation, and uses
the minimal dual graph to reduce the number of
combinations.

•  m = 2,3,4,|𝜓(cl)|	 	 (i.e.,	 minimal	 clusters)"(cl)|	 	 (i.e.,	 minimal	 clusters)"
•  2 hours and 8 GB per instance, 853 total instances.

Improving Relational Consistency Algorithms Using Dynamic Relation Partitioning
A.Schneider1, R.J.Woodward1,2, B.Y.Choueiry1, and C.Bessiere2

1Constraint Systems Laboratory • University of Nebraska-Lincoln • USA
2LIRMM-CNRS • University of Montpellier • France

Contributions

From PERTUPLE To PERFB

Experiments were conducted on the equipment of the Holland Computing Center at the University of Nebraska-Lincoln.
This research was supported by NSF Grant No. RI-111795 and EU project ICON (FP7-284715).
Woodward was supported by an NSF GRF Grant No. 1041000 and a Chateaubriand Fellowship.

Empirical Evaluation

Paper: CP 2014. September 4th, 2014

Relational Consistency
R(∗,m)C, m-wise consistency,
ensures that every combination
of m relations is minimal.

Partitions: Coarse, Fine, Intermediate

Future Research
Extend our approach to ALLSOL, our other algorithm for
enforcing minimality of m relations "[Karakashian PhD 13]"

1. Designed PERFB, an algorithm for enforcing R(*,m)C, exploiting
the fact that constraints in dual CSP are piecewise functional.

2. Compared performance of PERFB and PERTUPLE (previous
algorithm) to empirically establish improvements.

Piecewise Functional Constraints

[Lecoutre+]

Cumulative Charts

Summary Results

C
PU

 T
im

e
(s

)

Number of instances completed

Experimental Setup

For all tested combination sizes,
•  PERFB than PERTUPLE, and,
•  On instances solved by both algorithms, PERFB has a smaller

.
•  Dynamic partitions to SEARCHSUPPORT.

0

1000

2000

3000

4000

5000

6000

7000

8000

40
0

40
4

40
8

41
2

41
6

42
0

42
4

42
8

43
2

43
6

44
0

44
4

44
8

45
2

45
6

46
0

46
4

46
8

47
2

47
6

48
0

48
4

48
8

49
2

49
6

50
0

50
4

50
8

51
2

51
6

52
0

52
4

52
8

53
2

53
6

54
0

54
4

54
8

55
2

55
6

56
0

56
4

56
8

57
2

57
6

58
0

58
4

58
8

59
2

59
6

60
0

60
4

60
8

61
2

61
6

PerFB m=2 m=3

m=4 m=|C| m=|ψ(cl)|

C
PU

 T
im

e
(s

)

Number of instances completed

•  For m=2,3,4, |𝜓(cl)|,
PERFB dominates PERTUPLE

•  m=3 performs the best,
m=|𝜓(cl)| trails closely behind

[Karakashian+ AAAI 13]

PERFB makes fewer calls to SEARCHSUPPORT than PERTUPLE
1.  PERFB iterates over fine blocks rather than tuples
2.  At each call, it dynamically determines the

induced on a relation by the considered other relations.

A B E
fb6 0 0 0
fb7 0 0 1
fb8 0 1 0
fb9 0 1 1
fb10 1 0 0
fb11 1 0 1

C F
fb20 0 0
fb21 0 1
fb22 1 0

R5 R2 A B C D G

fb1
t1 0 0 0 0 0
t2 0 0 0 1 0

fb2 t3 0 0 1 0 0
fb3 t4 0 0 1 1 1

fb4
t5 0 1 1 0 1
t5 0 1 1 1 1

fb5 t7 1 1 1 1 1

R1

Considering relations R1,R2R5
•  The union of the subscopes of and determines the

intermediate partition induced by R2R5 on R1.
•  Projecting a fine block over this union forms a signature of a

fine block.
•  Once SEARCHSUPPORT finds (or not) a support for a fine block, it

reuses this result for future fine blocks with the same signature.

Samaras & Stergiou [JAIR 05] noted that the constraints in the dual
CSP are piecewise functional
1.  Each relation can be partitioned into blocks of equivalent tuples
2.  Each block is supported by at most one other block
They used above property to design PW-AC algorithm (m=2)

t1

ti

t2
t3

PERTUPLE enforces R(*,m)C [Karakshian+ AAAI10]
•  Given all combinations of m relations
•  For each relation in each combination
-  SEARCHSUPPORT (a backtrack search with

FC) ensures each tuple can be extended
to the other m-1 relations

-  If no solution is found, tuple is removed

The “subscope equality constraint” {A,B} between R1 and R2
determines the partition of R1.
•  What partition do two subscopes (e.g., {A,B}, {C}) induce on R1?
•  What partition do all the subscopes with R1’s neighbors (i.e., R2,

R3, R4, and R5) induce on R1?
•  How do those various partitions relate?
•  How to exploit them in PERTUPLE?

R2

R1

A,B,C,D,G

A,B,E A,B,F C,F B,E,G

A,B

R3 R4 R5

We compute and store fine and coarse blocks at preprocessing.

o1

cb1

t1
t2
t3
t4

cb2
t5
t6

cb3 t7

o2

cb4
t1
t2
t3

cb5 t4

cb6
t5
t6
t7

o3

cb7
t1
t2

cb8

t3
t4
t5
t6
t7

o1∪o2∪o3

fb1
t1
t2

fb2 t3
fb3 t4

fb4
t5
t6

fb5 t7

o1∪o3

ib1
t1
t2

ib2
t3
t4

ib3
t5
t6

ib4 t7

C1

o1

C3

C5

C2

o2

o1

C4
o3

R1

t1
t2
t3
t4
t5
t6
t7

R1: coarse blocks R1: fine R1: intermediate

The considered set of subscopes determines the partition of R1.

A B C D G
t1 0 0 0 0 0
t2 0 0 0 1 0
t3 0 0 1 0 0
t4 0 0 1 1 1
t5 0 1 1 0 1
t6 0 1 1 1 1
t7 1 1 1 1 1

A B E
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

✗

✗

R1 R2

∀ m-1 rela2ons	

..…
∀	 tuple	

∀	 rela2on	

m = 2 m = 3 m = 4 m = |𝜓(cl)|

Total: 853 instances

PE
R

TU
PL

E

PE
R

FB

PE
R

TU
PL

E

PE
R

FB

PE
R

TU
PL

E

PE
R

FB

PE
R

TU
PL

E

PE
R

FB

#Completed 546 557 604 616 566 589 597 615
… only by 5 16 1 13 2 25 8 26
… by both 541 603 564 589

Avg. CPU (sec) 538 227 521 362 472 314 669 458
SearchSupport Calls 86.4 0.0 88.1 26.1 52.7 19.6 24.7 8.1

ratio -- 3.37 2.69 3.06

0

1000

2000

3000

4000

5000

6000

7000

8000

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

51
0

52
0

53
0

54
0

55
0

m=2
PerTuple
PerFB

0

1000

2000

3000

4000

5000

6000

7000

8000

45
0

45
8

46
6

47
4

48
2

49
0

49
8

50
6

51
4

52
2

53
0

53
8

54
6

55
4

56
2

57
0

57
8

58
6

59
4

60
2

61
0

m=3
PerTuple
PerFB

0

1000

2000

3000

4000

5000

6000

7000

8000

40
0

41
1

42
2

43
3

44
4

45
5

46
6

47
7

48
8

49
9

51
0

52
1

53
2

54
3

55
4

56
5

57
6

58
7

59
8

60
9

m=|ψ(cl)|
PerTuple
PerFB

0

1000

2000

3000

4000

5000

6000

7000

8000

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

51
0

52
0

53
0

54
0

55
0

56
0

57
0

58
0

m=4
PerTuple
PerFB

•  〈R1,fb1〉 has support 〈R2,fb6〉, 〈R5,fb20〉.
•  〈R1,fb2〉 has support 〈R2,fb6〉, 〈R5,fb22〉.
•  fb2, fb3 have the same signature (intermediate block {fb2,fb3}).

SEARCHSUPPORT is not called on fb3.

