Improving Relational Consistency Algorithms Using Dynamic Relation Partitioning

Contributions

- . Designed PERFB, an algorithm for enforcing R(*,m)C, exploiting the fact that constraints in dual CSP are piecewise functional.
- 2. Compared performance of PERFB and PERTUPLE (previous algorithm) to empirically establish improvements.

Relational Consistency

Samaras & Stergiou [JAIR 05] noted that the constraints in the dual CSP are piecewise functional

 Each relation can be partitioned into blocks of equivalent tuples 2. Each block is supported by at most one other block They used above property to design PW-AC algorithm (*m*=2)

R_{\perp}			C	D		
•1	A	B	C	D	G	
t_1	0	0	0	0	0	
t_2	0	0	0	1	0	
t_3	0	0	1	0	0	
t_4	0	0	1	1	1	
t_5	0	1	1	0	1	
t_6	0	1	1	1	1	
t_7	1	1	1	1	1	X

The "subscope equality constraint" {A,B} between R_1 and R_2 determines the partition of R_1 .

- What partition do two subscopes (e.g., $\{A,B\}$, $\{C\}$) induce on R_1 ?
- What partition do all the subscopes with R_1 's neighbors (i.e., R_2 , R_3 , R_4 , and R_5) induce on R_1 ?
- How do those various partitions relate?
- How to exploit them in PERTUPLE?

A.Schneider¹, R.J.Woodward^{1,2}, B.Y.Choueiry¹, and C.Bessiere² ¹Constraint Systems Laboratory • University of Nebraska-Lincoln • USA ²LIRMM-CNRS • University of Montpellier • France

R_2	A	B	E
	0	0	0
	0	0	1
	0	1	0
	0	1	1
Y	1	0	0
	1	0	1

Partitions: Coarse, Fine, Intermediate

The considered set of subscopes determines the partition of R_1 .

PERTUPLE enforces R(*,m)C [Karakshian+AAAI10] | We compute and store fine and coarse blocks at preprocessing.

From PERTUPLE TO PERFB

PERFB makes fewer calls to SEARCHSUPPORT than PERTUPLE PERFB iterates over fine blocks rather than tuples At each call, it dynamically determines the intermediate blocks induced on a relation by the considered other relations.

Considering relations R_1, R_2, R_5

- The union of the subscopes of R_1, R_2 and R_1, R_5 determines the intermediate partition induced by R_2R_5 on R_1 .
- Projecting a fine block over this union forms a signature of a fine block.
- Once SEARCHSUPPORT finds (or not) a su reuses this result for future fine blocks wi

R	-1	A	B	C	D	G
fb ₁	t_1	0	0	0	0	0
	t_2	0	0	0	1	0
fb_2	t_3	0	0	1	0	0
fb_3	t_4	0	0	1	1	1
fb ₄	t_5	0	1	1	0	1
	t_5	0	1	1	1	1
fb_5	t_7	1	1	1	1	1

ת			
R_2	A	B	Ĵ
fb_6	0	0	
fb_7	0	0	
fb_8	0	1	
fb_9	0	1	
fb_{10}	1	0	
fb_{11}	1	0	

- $\langle R_1, fb_1 \rangle$ has support $\langle R_2, fb_6 \rangle$, $\langle R_5, fb_{20} \rangle$.
- $\langle R_1, fb_2 \rangle$ has support $\langle R_2, fb_6 \rangle$, $\langle R_5, fb_{22} \rangle$.
- fb_2 , fb_3 have the same signature (intern SEARCHSUPPORT is not called on fb_3 .

Experiments were conducted on the equipment of the Holland Computing Center at the University of Nebraska-Lincoln. This research was supported by NSF Grant No. RI-111795 and EU project ICON (FP7-284715). Woodward was supported by an NSF GRF Grant No. 1041000 and a Chateaubriand Fellowship.

_				
upport for a fine block, it it ith the same signature. $R_5 \overline{C F}$	 For all tested combination PERFB solves more On instances solved average CPU time. Dynamic partitions I 			
$J_{20} 0 0$	Γ	m-2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total: 853 instances			
	#Completed	546	į	
	only by	5		
	by both	<u> </u>		
		520	-	
	Avg. CPU (sec)	536		
	Search Support Calls	86.4		
	ratio			
nediate block $\{fb_2, fb_3\}$).	Extend our a enforcing minit	approac mality o)) f	

