
Selecting the Appropriate Consistency Algorithm for CSPs Using Machine Learning Classifiers

Daniel J. Geschwender, Shant Karakashian, Robert J. Woodward, Berthe Y. Choueiry, Stephen D. Scott
Department of Computer Science & Engineering • University of Nebraska-Lincoln

Constraint Satisfaction Problem:

 Used to model constrained

combinatorial problems

 Important real-world applications:

hardware & software verification,

scheduling, resource allocation, etc.

A CSP is defined as follows:

Given
 A set of variables {A,B,C}
 Their domains DA={1,2,3}, DB={1,2,3,4}, DC={0,1}
 A set of constraints: {A≥B,B≠2,A+C<3}
Question
 Find a solution NP-complete
 Count number of solutions #P
 Find minimal network NP-complete
 Minimize number of broken constraints NP-hard

Tree Decomposition:

 Used to break up a CSP
into clusters arranged in
a tree structure

 Each cluster is a
subproblem that can be
independently handled

 Filtering performed on a
cluster propagates to
neighboring clusters

Minimal Network:

 Is a consistency property
 Guarantees that every tuple allowed by a constraint must participate in some

solution to the CSP (i.e., the constraints are as minimal as possible)

Two Algorithms for Enforcing Minimality:

 ALLSOL: better when there are many ‘almost’ solutions
o Finds all solutions without storing them, keeps tuples that appear in at

least one solution
oOne search explores the entire search space

 PERTUPLE: better when many solutions are available
o For each tuple, finds one solution where it appears
oMany searches that stop after the first solution

The Problem of ALLSOL vs. PERTUPLE:

 The performance of the two algorithms varies widely
 One algorithm may complete quickly while the other may not terminate
 The performance depends on size and difficult of the CSP instance

Question: Can we use Machine Learning to classify the instance

& predict the best algorithm?

Using Machine Learning:

 We used a decision tree classifier (J48 from Weka Machine Learning suite) to
make our predictions

 Each instance is a single cluster from a tree decomposition
 The 12 features of the CSP are observed
 CPU time for ALLSOL & PERTUPLE is recorded for each instance
 Experimented with four sets of training conditions

Future Work:

 Use a larger & more diverse set of benchmarks
 Explore additional features and classifiers
 Consider additional consistency properties & propagation algorithms

Supported by NSF Grant No. RI-111795 and Undergraduate

Creative Activities and Research Experiences Program

(UCARE) of the University of Nebraska-Lincoln. Experiments

conducted at UNL’s Holland Computing Center.

Experiments:

1. All instances – Trained using all data collected
2. δt ≥ 100ms – Removed all instances where the difference in time was less

than 100ms
3. Weighted – All instances are given a weight equal to the difference in

execution time of the two algorithms
4. Cost – A cost matrix is used in the training, which provides average

misclassification costs for each class

Practical Tractability: [Karakashian+ AAAI 2013]

 Enforces minimality on each cluster of a tree decomposition
 Bolsters propagation between clusters by adding constraints to separators
 Solves many instances in a backtrack-free manner

Our Classification: 3592 instances from 5 benchmarks

Larger Instance Space: 318158 instances from 119 benchmarks

Strategy F-measure Time saved Time lost

% ms ms

All instances .727 99.87% 15,301,950 19,350

δt ≥ 100ms .729 99.90% 15,306,510 14,790

Weighted .743 99.96% 15,314,980 6,320

Cost .557 99.57% 15,255,190 66,110

Experiment Results:

Feature Set:

Characteristics of the problem
selected to differentiate the
classes

• Kappa – predicts if instance

is near phase transition
• relLinkage – likelihood of a

tuple at the overlap of
relations to be in solution

• tupPerVvp – count of tuples
containing a given variable
value pair

• relPerVar – number of
relations on a given variable

Date July 7, 2013

A B
{1,2,3} {1,2,3,4}

A≥B

(1,1) (2,1) (2,2)
(3,1) (3,2) (3,3)

A
B

C

{1,2,3}

{1,2,3,4}

{0,1}

B≠1

A≥B

A+C<3

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

A
llS

o
l
C

P
U

 t
im

e
 (

s
)

PerTuple CPU time (s)

CPU time

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

A
llS

o
l
C

P
U

 t
im

e
 (

s
)

PerTuple CPU time (s)

CPU time

