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Constraint Satisfaction Problem: 

 Used to model constrained 

combinatorial problems 

 Important real-world applications: 

hardware & software verification, 

scheduling, resource allocation, etc. 

A CSP is defined as follows: 

Given 
 A set of variables                                                                         {A,B,C} 
 Their domains                                    DA={1,2,3}, DB={1,2,3,4}, DC={0,1} 
 A set of constraints:                                                     {A≥B,B≠2,A+C<3} 
Question 
 Find a solution                                                                     NP-complete 
 Count number of solutions                                                                   #P 
 Find minimal network                                                            NP-complete 
 Minimize number of broken constraints                                          NP-hard 

 
 

Tree Decomposition: 

 Used to break up a CSP 
into clusters arranged in 
a tree structure 

 Each cluster is a 
subproblem that can be 
independently handled 

 Filtering performed on a 
cluster propagates to 
neighboring clusters 

Minimal Network: 

 Is a consistency property 
 Guarantees that every tuple allowed by a constraint must participate in some 

solution to the CSP (i.e., the constraints are as minimal as possible) 
 

 

Two Algorithms for Enforcing Minimality: 

 ALLSOL: better when there are many ‘almost’ solutions 
o Finds all solutions without storing them, keeps tuples that appear in at 

least one solution 
oOne search explores the entire search space 

 PERTUPLE: better when many solutions are available 
o For each tuple, finds one solution where it appears 
oMany searches that stop after the first solution 

 

The Problem of ALLSOL vs. PERTUPLE: 

 The performance of the two algorithms varies widely 
 One algorithm may complete quickly while the other may not terminate 
 The performance depends on size and difficult of the CSP instance 

  
Question: Can we use Machine Learning to classify the instance  

& predict the best algorithm? 

Using Machine Learning: 

 We used a decision tree classifier (J48 from Weka Machine Learning suite) to 
make our predictions 

 Each instance is a single cluster from a tree decomposition 
 The 12 features of the CSP are observed 
 CPU time for ALLSOL & PERTUPLE is recorded for each instance 
 Experimented with four sets of training conditions 

Future Work: 

 Use a larger & more diverse set of benchmarks 
 Explore additional features and classifiers 
 Consider additional consistency properties & propagation algorithms 
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Experiments: 

1. All instances – Trained using all data collected 
2. δt ≥ 100ms – Removed all instances where the difference in time was less 

than 100ms 
3. Weighted – All instances are given a weight equal to the difference in 

execution time of the two algorithms 
4. Cost – A cost matrix is used in the training, which provides average 

misclassification costs for each class 
 

Practical Tractability:  [Karakashian+ AAAI 2013] 

 Enforces minimality on each cluster of a tree decomposition 
 Bolsters propagation between clusters by adding constraints to separators 
 Solves many instances in a backtrack-free manner 

Our Classification:                      3592 instances from 5 benchmarks 

 
 

Larger Instance Space:          318158 instances from 119 benchmarks 

 
 

Strategy F-measure Time saved Time lost 

% ms ms 

All instances .727 99.87% 15,301,950 19,350 

δt ≥ 100ms .729 99.90% 15,306,510 14,790 

Weighted .743 99.96% 15,314,980 6,320 

Cost .557 99.57% 15,255,190 66,110 

Experiment Results: 

 
 

Feature Set: 

Characteristics of the problem 
selected to differentiate the 
classes 

 
• Kappa – predicts if instance 

is near phase transition 
• relLinkage – likelihood of a 

tuple at the overlap of 
relations to be in solution 

• tupPerVvp – count of tuples 
containing a given variable 
value pair 

• relPerVar – number of 
relations on a given variable 
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