Selecting the Appropriate Consistency Algorithm for CSPs Using Machine Learning Classifiers

Daniel J. Geschwender, Shant Karakashian, Robert J. Woodward, Berthe Y. Choueiry, Stephen D. Scott Department of Computer Science & Engineering • University of Nebraska-Lincoln

Constraint Satisfaction Problem:

- Used to model constrained combinatorial problems
- Important real-world applications: hardware & software verification, scheduling, resource allocation, etc.

A CSP is defined as follows:

Given

- A set of variables
- Their domains
- A set of constraints:

Question

- Find a solution
- Count number of solutions
- Find minimal network
- Minimize number of broken constraints

Practical Tractability:

- Enforces minimality on each cluster of a tree decomposition
- Bolsters propagation between clusters by adding constraints to separators
- Solves many instances in a backtrack-free manner

Minimal Network:

- Is a consistency property
- Guarantees that every tuple allowed by a constraint must participate in some solution to the CSP (i.e., the constraints are as minimal as possible)

Two Algorithms for Enforcing Minimality:

- ALLSOL: better when there are many 'almost' solutions
- Finds all solutions without storing them, keeps tuples that appear in at least one solution
- One search explores the entire search space
- PERTUPLE: better when many solutions are available • For each tuple, finds one solution where it appears Many searches that stop after the first solution

Experiment Results:

Strategy	F-measure	Time saved		Time lost
		%	ms	ms
All instances	.727	99.87%	15,301,950	19,350
$\delta_t \ge 100 \text{ms}$.729	99.90%	15,306,510	14,790
Weighted	.743	99.96%	15,314,980	6,320
Cost	.557	99.57%	15,255,190	66,110

Our Classification:

Larger Instance Space:

Future Work:

- Use a larger & more diverse set of benchmarks
- Explore additional features and classifiers

3592 instances from 5 benchmarks

PerTuple CPU time (s)

318158 instances from 119 benchmarks

CPU time

• Consider additional consistency properties & propagation algorithms

conducted at UNL's Holland Computing Center