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Abstract

Local consistency properties and algorithms for enforc-
ing them are central to the success of Constraint Pro-
cessing. Recently, we have demonstrated the impor-
tance of higher levels of consistency and the effective-
ness of their algorithms for solving difficult problems
(Karakashian et al. 2010; Woodward et al. 2011). In
this paper, we introduce two reformulation techniques
for improving the effectiveness of our algorithm for the
relational consistency property R(∗, m)C (Karakashian
et al. 2010). Both techniques exploit a tree decomposi-
tion of the constraint network of a Constraint Satisfac-
tion Problem (CSP), which is a tree embedding of the
network. Our first reformulation technique exploits the
structure of the decomposition tree and the state of the
backtrack search to omit unnecessary steps from our al-
gorithm and improve its performance. Our second con-
tribution is new relational consistency property called
T-R(∗, m, z)C that is strictly stronger than R(∗, m)C.
This property is achieved by modifying the structure of
the constraint network and adding new redundant con-
straints to the CSP at the intersection of two vertices
of the tree decomposition (Rollon and Dechter 2010).
We demonstrate the advantages of the proposed two
reformulations for finding all the solutions of a CSP
using the technique known as Backtracking with Tree
Decomposition (BTD) (Jégou and Terrioux 2003).

1 Introduction

Consistency propagation algorithms are at the heart of
solving Constraint Satisfaction Problems (CSPs). Arc
consistency has been widely used and improved over the
years, and recent studies demonstrated the effectiveness
of high levels of consistency properties (Karakashian
et al. 2010; Woodward et al. 2011). In this pa-
per, we present the algorithm ProcessMQ as an im-
provement of the queue management strategy, Pro-
cessQ, for enforcing the relational consistency property
R(∗,m)C (Karakashian et al. 2010). We also propose
a new consistency property called T-R(∗,m, z)C.

The algorithm that we introduced in (Karakashian et
al. 2010) enforces R(∗,m)C by checking the extension
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of every tuple in every m−1 related relations, and delet-
ing the tuple when the check fails. ProcessQ, which
manages the relation updates, loops through all the re-
lations until quiescence. ProcessMQ is a reformula-
tion of the algorithm ProcessQ that does not loop
when certain condition is met, and omits unnecessary
checks during Backtracking with Tree Decomposition
(BTD) (Jégou and Terrioux 2003).

A tree decomposition of a CSP is a tree embedding
of the constraint network (Dechter 2003). The nodes
of the tree are clusters of CSP variables and relations.
The intersection of two adjacent clusters in the tree is,
a separator, is the set of variables common to the two
clusters. A tree decomposition can have the property
where the variables in the intersection of every two clus-
ters are a subset of the scope of a relation in one of the
clusters. When this situation holds, we say that the
separator is covered by the relation. When every sepa-
rator is covered by a single relation, R(∗,m)C can be
enforced by ordering the relations and checking them
in only two passes: starting from the relations in the
leaf clusters, via the parents to the root, and back to
the leaf clusters. Quiescence is reached without having
to loop. For example, the hinge (Cohen, Jeavons, and
Gyssens 2008) and hinge+ (Zheng and Choueiry 2005)
tree decompositions fulfill this condition. The refor-
mulated algorithm ProcessMQ exploits this situation
to reduce the propagation effort without affecting the
filtering effectiveness.

The reformulated algorithm also exploits the state
of BTD (Jégou and Terrioux 2003) to omit unneces-
sary propagation steps from R(∗,m)C. BTD restricts
the variable ordering so that the variables in a parent
cluster are instantiated before the variables in its chil-
dren. When this ordering is followed and all the vari-
ables in a cluster are instantiated, the subtrees rooted
at the children of this cluster can be treated as indepen-
dent problems. Unlike ProcessQ, ProcessMQ omits
checking relations in subtrees other than the subtree
rooted at the cluster in which the variable is instanti-
ated, thus localizing the propagation effort.

It is not in general the case that every separator is
covered by a relation in a tree decomposition. For ex-
ample, the tree-clustering technique of (Dechter and



Pearl 1989), which we use in this paper, does not guar-
antee the condition. After generating a a tree decom-
position, one could add new relations to cover the sepa-
rators by joining existing relations in the cluster. How-
ever, when the number of variables in the separator
is large (i.e., a large size separator), adding a single
relation to cover the separator may not be practical
because of the space overhead. We propose to use
the mini-bucket partitioning heuristic of Rollon and
Dechter (2010) to generate possibly several redundant
relations that partially cover the variables in a separa-
tor. This operation is reformulation of the original CSP
by the addition of redundant constraints that boost
propagation without changing the set of solutions of the
problem. R(∗,m)C on the reformulated CSP is strictly
stronger than it is on the original problem, resulting in
a new consistency property. We denote this property
by T-R(∗,m, z)C, where the parameter z is an input
integer parameter to the mini-bucket partitioning algo-
rithm of (Rollon and Dechter 2010), the largest scope
of any relation generated by the algorithm.

Our contributions can be summarized as follows:

1. Reformulation of ProcessQ to ProcessMQ to im-
prove the performance of enforcing R(∗,m)C

2. Introduction of a new relational consistency property
T-R(∗,m, z)C

3. Experimental evaluation on benchmark problems

This paper is organized as follows. Section 2 gives
some background information. Section 3 reviews re-
lated work. Section 4 describes the property R(∗,m)C
and the algorithm ProcessQ for enforcing it. Section 5
describes the reformulated algorithm ProcessMQ and
Section 6 presents the new property T-R(∗,m, z)C. Sec-
tion 7 discusses our experimental results and Section 8
concludes this paper.

2 Background
A Constraint Satisfaction Problem (CSP) is defined by
(X ,D, C) where X is a set of variables, D is a set of
domains, and C is a set of relations. Each variable
Ai∈X has a finite domain Di∈D, and is constrained
by a subset of the constraints in C. Each constraint
in C is defined by a relation R specified over the scope
of the constraint, which are the variables subject to
the constraint, as a subset of the Cartesian product of
the domains of those variables. A tuple τ∈R is thus
a combination of values for the variables in the scope
of the constraint that is either allowed (i.e., support)
or forbidden (i.e., conflict). A solution to the CSP is
an assignment of a value to each variable such that all
the constraints are satisfied. Solving a CSP consists in
finding one or all solutions.

A CSP can be represented by several types of graphs.
In the hypergraph of a CSP, the vertices represent the
variables of the CSP and the hyperedges represent the
scopes of the constraints. Figure 1 shows the hyper-
graph of a CSP where X = {A,B,C,D,E, F,G}. In

Figure 1: Hypergraph. Figure 2: Primal graph.

Figure 3: Dual graph.
Figure 4: A tree decomposi-
tion.

the primal graph, the vertices represent the variables
and (binary) edges link every two variables that appear
in the scope of some constraint, see Figure 2. In the dual
graph, the vertices represent the relations of the CSP
and edges connect two vertices corresponding to rela-
tions whose scopes overlap, see Figure 3. The dual CSP
is thus a binary CSP where: (1) variables are the rela-
tions of the original CSP; (2) the variable domains are
the tuples of the corresponding relations; and (3) the
constraints enforce equalities over the shared variables.
We denote by ϕ a combination of m constraints that
induce a connected component in the dual graph, and
by Φ the set of all such combinations of size m in the
CSP. Finally, π and on denote the relational operators
project and join, respectively.

A tree decomposition of a CSP is defined by a triple
〈T , χ, ψ〉, where T = (V, E) is a tree with a set V of
vertices, also called clusters, and a set E of edges. χ
is a function that associates with each cluster v ∈ V
a set of variables χ(v) ⊆ X , and ψ is a function
that associates with each cluster v a set of relations
ψ(v) ⊆ C. A tree decomposition is a tree embedding
of the CSP that satisfies the following two conditions:
(1) For each relation R there is at least one cluster
v ∈ V where R ∈ ψ(v) and scope(R) ⊆ χ(v); and
(2) For every variable x ∈ X , the clusters where x ap-
pears induce a connected subtree of T . Figure 4 shows
a tree decomposition of the CSP of Figure 1. Assum-
ing that T is a rooted tree, the separator of a cluster
vi ∈ V is defined as sep(vi) = χ(vi) ∩ χ(vp), where
vp is the parent of vi. A tree is characterized by its
treewidth tw = maxv∈V |χ(v)| − 1 and its hyperwidth
hw = maxv∈V |ψ(v)|. Many tree-decomposition tech-
niques exist. In this paper, we use the tree-clustering
technique of (Dechter and Pearl 1989). In summary,
(1) we triangulate the primal graph of the CSP using
the min-fill heuristic (Kjærulff 1990); (2) we identify the
maximal cliques in the resulting chordal graph using
the MaxCliques algorithm (Golumbic 1980); (3) we



use the identified maximal cliques to form the clusters
of the tree decomposition; (4) we connect the clusters
to form a tree using the JoinTree algorithm (Dechter
2003). In our work, we choose the root of the tree as
the cluster that minimizes the longest chain to a leaf.
Further, we place each relation R in the cluster vi where
scope(R) ⊆ ψ(vi) but scope(R) 6⊆ ψ(vj) where vj is the
parent of vi.

To reduce the severity of the combinatorial explosion,
CSPs are usually filtered by enforcing a given local con-
sistency property. One such common property is Gen-
eralized Arc Consistency (GAC). A CSP is GAC iff for
every relation, any value in the domain of any variable
in the scope of the relation can be extended to a tuple
satisfying the relation. Using the terminology intro-
duced in (Debruyne and Bessiere 1997), we say that a
consistency property p is stronger than another p′ if in
any CSP where p holds, p′ also holds. Further, we say
that p is strictly stronger than p′ if p is stronger than
the p′ and there exists at least one CSP in which p′

holds but not p. Similarly to (Bessiere, Stergiou, and
Walsh 2008), we say that p and p′ are equivalent when
p is stronger than p′ and vice versa. In practice, when a
consistency property is stronger (respectively, weaker)
than another, enforcing the former never yields less (re-
spectively, more) pruning than enforcing the latter on
the same problem.

3 Related Work
Algorithms for enforcing local consistency allow us to
effectively reduce the size of the search space and the
cost of the search effort while having typically a polyno-
mial cost. Increasing the level of consistency enforced
is in general problematic and unpopular because it may
require the generation of an exponential number of con-
straints, prohibitively affecting the space requirements
and increasing the computational cost. Those issues
worsen in the presence of non-binary constraints.

On the conceptual level, relational(i,m)-consistency
is a parameterized relational-consistency property pro-
posed in (Dechter and van Beek 1997), and m-wise
consistency was proposed in the area of Relational
Databases (Gyssens 1986). Recently, we reintroduced
m-wise consistency with an algorithm for enforcing it
that demonstrated practical benefits (2010).

Tree clustering proposed by Dechter and Pearl (1989)
is a tree decomposition method for binary CSPs similar
to the decomposition that we use in this work. Hyper-
tree decomposition is more general than tree clustering,
it has algorithms for finding the optimal decomposition
proposed by Gottlob and Samer in (2009) and heuris-
tic methods with better runtime and close to optimal
results proposed in (Dermaku et al. 2008).

Backtrack search with tree decomposition (BTD) was
introduced by (Jégou and Terrioux 2003) and exploits
the tree decomposition of CSP during the search pro-
cess. First, BTD follows the ordering of the vari-
ables in the clusters for instantiation while allowing dy-
namic ordering within a cluster. By doing so, BTD

exploits the fact that the search effort is bounded by
the treewidth of the tree decomposition. Further, BTD
generates structural goods and nogoods at the separa-
tors. Those nogoods (respectively, goods) are inconsis-
tent (respectively, consistent) partial assignments that,
when recorded, can be used to avoid visiting the sub-
trees rooted at the corresponding separator when the
same partial assignments are encountered again at the
separator. BTD has been successfully used for solving
CSPs (Jégou and Terrioux 2003) and for counting num-
ber of solutions to a CSP (Favier, de Givry, and Jégou
2009).

Mini-Bucket Elimination (MBE) algorithm is a pow-
erful tool used to solve optimization problems (Dechter
and Rish 2003; Marinescu and Dechter 2007). MBE
partitions a bucket (i.e., set of relations) into mini-
buckets, such that the number of variables in each mini-
bucket is bounded by an input parameter z before elim-
inating variables. We use the partitioning algorithm
GreedyPartition of (Rollon and Dechter 2010) to
generate new relations at the separators of the tree
decomposition. The complexity of GreedyPartition
is O(e3dz), where e is the number of relations in the
bucket, d is the domain size of the variables, and z is the
parameter limiting the mini-bucket size. We treat each
cluster of the tree decomposition as a bucket, and use
GreedyPartition to generate a relation correspond-
ing to the join of the relations of each mini-bucket. We
enhance the filtering power of R(∗,m)C by generating
the new relations, hence yielding a new relational con-
sistency property: T-R(∗,m, z)C.

4 Background Information on R(∗, m)C
The consistency property R(∗,m)C is a strong and
parameterized relational consistency property defined
over the relations of a problem (Karakashian et
al. 2010). This section recalls its definition from
(Karakashian et al. 2010) and summarizes the algo-
rithm for enforcing it.
Definition 1 A set of m relations R = {R1, · · · , Rm}
with m≥2 is said to be R(∗,m)C iff every tuple in
each relation Ri ∈ R can be extended to the variables
in

⋃
Rj∈R scope(Rj) \ scope(Ri) in an assignment that

satisfies all the relations in R simultaneously. A net-
work is R(∗,m)C iff every set of m relations, m≥2, is
R(∗,m)C.
Informally, in every given set ϕ of m relations, every tu-
ple τ in every relation R ∈ ϕ can be extended to a tuple
τ ′ in each R′ ∈ ϕ \ {R}, such that all those tuples form
a consistent solution to the relations in ϕ. R(∗,m)C
can be enforced by filtering the existing relations, and
without introducing any new relations to the CSP. This
operation will be repeatedly applied to all combinations
of m relations {R1, · · · , Rm} until quiescence:

∀Ri ∈ {R1, · · · , Rm}, Ri = πscope(Ri)(on
m
j=1 Rj) (1)

After enforcing R(∗,m)C on a constraint network, vari-
able domains are filtered by projecting the filtered re-



lations on the domains of the variables. This pro-
cess (domain filtering) is always applied by default un-
less explicitly stated. These domain reductions do not
break the R(∗,m)C property. Therefore, if a network
is R(∗,m)C, domain filtering by projecting relations on
domains or by GAC cannot enable further relations fil-
tering by R(∗,m)C (Karakashian et al. 2010).

4.1 An Algorithm for Enforcing R(∗,m)C
Our algorithm for enforcing R(∗,m)C is discussed in de-
tail in (Karakashian et al. 2010). We summarize it here.
We define Sτ,ϕ, the support of tuple τ ∈ R, to be the
set of tuples that verify the condition: ∀R′ ∈ ϕ \ {R},
∃τ ′ ∈ Sτ,ϕ, τ ′ ∈ R′, and the tuples in Sτ,ϕ ∪ {τ} agree
on all shared variables. For each tuple τ ∈ R without
a valid support, the function SearchSupport deter-
mines Sτ,ϕ as the first solution of a backtrack search
procedure on the subproblem induced by the relations
in ϕ and where R is assigned τ . The support is recorded
and stays active as long as all its constituent tuples
are active. SearchSupport uses forward checking
and dynamic variable ordering (domain/degree). The
function ProcessQ loops through all the relations and
checks for the valid support of each tuple in the relation.
When no valid support is found for a tuple, the tuple is
deleted. ProcessQ stops when all ‘active’ tuples have
a valid support.

5 Enforcing R(∗, m)C with Tree
Decomposition

Given a tree decomposition of the CSP and the state
of the search, we describe how we improve the execu-
tion of R(∗,m)C. Section 5.1 informally describes how
unnecessary checks in ProcessQ can be avoided. Sec-
tion 5.2 describes ProcessMQ, which implements this
improvement by maintaining local propagation queues.
Section 5.3 justifies how relations are assigned to clus-
ters in the tree decomposition. Section 5.4 explains how
the local queues are updated during search. Finally,
Section 5.5 discusses the correctness of ProcessMQ.

5.1 Intuition
Consider the hypergraph shown in Figure 1, its dual
graph shown in Figure 3 and a tree decomposition
shown in Figure 4. Let Φ be the set of all m combi-
nations of connected relations in the dual graph shown.

In a pre-processing step, we can enforce R(∗,m)C by
starting from the leaves, up to the root, and then back
to the leaves and be guaranteed to reach quiescence
rather than looping through the relations. This sim-
plification is possible because the condition that each
separator be covered is satisfied. Note that our tree
decomposition does not guarantee the condition.

After instantiating the variables A, B, and C, which
form the root cluster, and propagating the effects of
these instantiations on the children clusters, the tuples
in R1 and R2 that surviving the filtering process cannot
be affected by deletions of tuples in R4 and R5. The

converse also holds. Therefore, even though R2 and R5

may appear in some combination in Φ, this combination
need not be revised.

5.2 ProcessMQ
We modify ProcessQ into ProcessMQ to exploit the
tree decomposition and the state of the search in the
tree. ProcessMQ differs from ProcessQ in that it
uses a propagation queue for each cluster instead of the
global propagation queue for the entire CSP.

Given a CSP P=(X ,D, C), we first generate Φ the
set of all m constraints that are connected in the dual
graph. Next, we compute a tree decomposition of the
CSP 〈T , χ, ψ〉 with T = (V, E) using tree clustering
(Dechter and Pearl 1989). We generate all relation-
combination pairs (R,ϕ) for every relation in the CSP
and every combination ϕ ∈ Φ where R ∈ ϕ. We gen-
erate a local propagation queue Qv for each cluster
v in the tree, which we initialize with the relation-
combination pairs (R,ϕ) for all the relations in the
cluster, R ∈ ψ(v). ProcessMQ orders the local prop-
agation queues in the post-order traversal of the cor-
responding tree clusters (i.e., from the children to the
root). ProcessMQ processes each local queue Qv once
in that sequence, the last queue processed being the one
assigned to the root cluster. Then, ProcessMQ pro-
ceeds again in the reverse order, from the root to the
leaves. Unless all separators are covered, the above pro-
cess may need to be repeated until either all queues are
empty or inconsistency is detected because all tuples in
some relation have been removed. At each queue Qv,
ProcessMQ examines one relation-combination pair
from Qv at a time. It iterates over the active tuples
of R and uses SearchSupport to seek a support for
each such tuple τ ∈ R. When no support is found,
ProcessMQ removes τ from R and, for each combina-
tion ϕ such that R ∈ ϕ, for each R′ ∈ ϕ \ {R}, it adds
the pair (R′, ϕ′) where R,R′ ∈ ϕ′ to the queue Qv′ of
the cluster v′ where R′ appears (i.e., R′ ∈ ψ(v′)).

5.3 Assigning Relations to Clusters
As described in Section 2, a constraint R is added to a
cluster v if its scope is a subset of the variable set of the
cluster (i.e., scope(R) ⊆ χ(vi)) but not a subset of the
parent cluster (i.e., scope(R) 6⊆ ψ(vj), vj parent of vi).
The reason for this choice is best demonstrated on a
CSP that is already R(∗,m)C but R(∗,m)C still needs
to be verified. Consider the example where a relation
R is such that scope(R) ⊆ χ(v1), scope(R) ⊆ χ(v2),
scope(R) ⊆ χ(v3). Let v1 be the parent of v2 and v3. If
R is added to all the three clusters, then R is checked
three times. By putting R only in v1, we are traversing
the tuples in R only once.

5.4 ProcessMQ during Search
ProcessMQ is used during backtracking with tree de-
composition (BTD) (Jégou and Terrioux 2003) to en-
force full lookahead. BTD restricts the variable order-
ing so that the variables in a parent cluster are instanti-



ated before the variables in its children. Inside a cluster
the variables are ordered according to some heuristic
such as minimizing domain over degree heuristic. After
a variable A in some cluster v is instantiated, all the
relations R where A appears are filtered to remove all
the tuples disagreeing with the instantiation of A. Fur-
ther, for each combination ϕ such that R ∈ ϕ and each
relation R′ ∈ ϕ \ {R}, the pair (R′, ϕ′) is added to the
queue Qv′ where R,R′ ∈ ϕ′, R ∈ ψ(v′), and v′ is in
the subtree rooted at v. During lookahead, when Pro-
cessMQ deletes a tuple that has no support, relations
R′ that do not belong to a cluster in the subtree rooted
at v are not added to the queue.

Consider again the tree decomposition in Figure 4.
Assume that variables A, B, and C have been instan-
tiated. After instantiating variable E, some tuples in
R1 and R2 may be deleted, however, only R1 and R2,
paired with the combination {R1, R2}, are added to the
queue. In particular, R4 will not be added to the queue
despite the existence of the combination {R1, R4}. Sim-
ilarly, when a tuple is deleted from R1 or R2 by Pro-
cessMQ, no relations other than R1 and R2 are added
to the queue.

5.5 Correctness
With respect to ProcessQ, ProcessMQ changes only
the ordering in which the relation-combination pairs
are checked by storing them in different queues. The
correctness of ProcessMQ follows directly from the
correctness of ProcessQ proved in (Karakashian et
al. 2010). When ProcessMQ is used during search,
the relation-combination pairs that are not added to a
queue can be safely ignored and need not be revised.
These relations and those that lost tuples share only
the instantiated variables. Hence, the tuples in the ig-
nored relations will be supported as long as the same
variable instantiation is maintained.

6 T-R(∗, m, z)C

T-R(∗,m, z)C is a new relational consistency property
that is strictly stronger than R(∗,m)C. It differs from
R(∗,m)C because it creates new relations and changes
the topology of the graph. It does not add new relations
exhaustively like RmC (Dechter and van Beek 1997),
but only at specific locations, namely at the separators
of a given tree decomposition. Thus, the property de-
pends on the tree decomposition used and is defined by
it. For the sake of simplicity, however, the particular
tree decomposition is not included in the notation.

The new relations are added by joining existing rela-
tions in a cluster and projecting the result on the vari-
ables that are common to two adjacent clusters. For
the purpose of generating the new redundant relations,
we first compute a tree decomposition of the CSP as de-
scribed in Section 2, except for assigning the relations
to the clusters. In this process, we place a relation R
in a cluster vi if the scope of R is a subset of the set of
variables associated with the cluster scope(R) ⊆ ψ(vi),

but not a subset of any cluster vc scope(R) 6⊆ ψ(vj)
where vc is a child of vi.

After placing the relations, we process the clusters
from the leaves up to the root. At each cluster, we ap-
ply the procedure GreedyPartition of (Rollon and
Dechter 2010) to generate the new relations at the sep-
arator of the cluster then place the generated relations
in the parent cluster. GreedyPartition is a greedy
algorithm that takes a set of relations, a parameter z,
a set of variables Xp and returns a set of relations over
Xp that are heuristically as tight as possible while not
generating any intermediate relation with an arity ex-
ceeding z. The algorithm proceeds by joining pairs of
heuristically chosen relations as long as the scope of the
join does not exceed the fixed size z. Then projects the
joined relations on Xp. If z is large enough, all the
relations will be joined into a single relation and then
projected on Xp. At each cluster v, we pass to the algo-
rithm ψ(v), χ(v) ∩ χ(v′), and z, where v′ is the parent
of v if v is not the root, and is the root cluster if v is the
root. If v has children, then ψ(v) will also include the
newly generate relations passed from the children. The
parameter z is the parameter passed to the consistency
property T-R(∗,m, z)C.

Let Cδ be the set of all generated relations. The re-
formulated CSP is Pr=(X ,D, C′), where Cr = (C ∪Cδ)\
{R|R ∈ C,∃R′ ∈ Cδ, scope(R) ⊂ scope(R′)}. We use
the dual graph of Pr to generate the set of combinations
Φ necessary for enforcing R(∗,m)C. The tree decompo-
sition of the CSP is substituted by 〈T , χ, ψr〉, where ψr
is defined as before, associates each relation in Cr to the
cluster if the scope of the relation is subset to the set of
variables associated with that cluster but not subset to
the set of variables associated with the parent cluster.

Theorem 1 T-R(∗,m)C is strictly stronger than
R(∗,m)C.

Proof: Let G be the dual graph of the original problem
and G′ be the dual graph of the reformulated problem
by adding the separator relations. Every node and ev-
ery edge in G will also appear in G′. G will have addi-
tional nodes and edges. Now consider the relations that
are omitted. Let Rig be such a relation. ∃Rni ∈ G′,
scope(Rig) ⊆ scope(Rni). Hence, the ignored relation
will in fact be replaced with a relation whose scope is a
superset of the scope of the ignored relation, and con-
sequently will have at least all the edges incident on it
in G′ that were in G. Thus T-R(∗,m)C will check all
partial assignments that R(∗,m)C does, and therefore
is stronger than R(∗,m)C.

Moreover, T-R(∗,m, z)C is strictly stronger than
R(∗,m)C. Below, we provide an example that is
R(∗,m)C but not T-R(∗,m,z)C. Let P be the Boolean
CSP shown in Figure 5 with five variables A, B, C, D,
and E and the four all equals relations: R1, R2, R3, and
R4. The primal graph of P is shown in Figure 6, and
the dual graph is given in Figure 7. The edge added
to the primal graph by the triangulation algorithm is
shown in dotted line. For a tree decomposition shown



in Figure 9, the reformulated problem will have the ad-
ditional separator relation R5 with scope {A,E} pro-
vided the parameter z used for partitioning is at least 4.
The dual graph of the reformulated problem is given in
Figure 8. Let PTR and PR be the problems after T-
R(∗,m,z)C and R(∗,m)C are enforced on PTR, and PR,
respectively. The partial assignment 〈(A, 0), (E, 1)〉 is
consistent in PR because PR has no relation between
A and E. However, this partial assignment violates the
relation R5 = {〈0, 0〉, 〈1, 1〉} which is added in PTR by
T-R(∗,m,z)C. Thus, T-R(∗,m,z)C is strictly stronger
than R(∗,m)C. �

Figure 5: Hypergraph. Figure 6: Primal graph.

Figure 7: Dual graph.

Figure 8: Dual graph.
Figure 9: A tree decomposi-
tion.

6.1 Weakened Form
In the dual graph, edges enforce the equality of the
shared variables of two adjacent vertices. Janssen et
al. (1989) and Dechter (2003) observed that an edge
between two vertices is redundant if there exists an al-
ternate path between the two vertices such that the
shared variables appear in every vertex in the path.
Such redundant edges can be removed without modify-
ing the set of solutions. Janssen et al. (1989) introduced
an efficient algorithm for computing the minimal dual
graph by removing redundant edges. Many minimal
graphs may exist, but they are all guaranteed to have
the same number of remaining edges. In the example
of Figure 3, the edges (R3, R4) and (R2, R5) are redun-
dant.

Removing redundant edges from the dual graph re-
duces the size of Φ but also weakens R(∗,m)C, which
we denote in(Karakashian et al. 2010) wR(∗,m)C. Sim-
ilarly, we define the weakened from of T-R(∗,m, z)C
and call it wT-R(∗,m, z)C by considering the minimal
dual graph for generating the set of combinations Φ.
wT-R(∗, 2, z)C is strictly stronger than wR(∗,m)C. For
m > 2, we expect wT-R(∗,m, z)C to filter more tu-

ples than wR(∗,m)C as is demonstrated in the experi-
ments, but theoretically they are incomparable because
the minimal dual graphs may be different and consider
different partial assignments.

7 Experimental Results
In this section, we demonstrate the performance of
ProcessMQ by comparing it to ProcessQ. We also
show the effect of the new property wT-R(∗,m, z)C.
We conducted the experiments on benchmarks from
the CSP Solver Competition1. We limited each run for
each instance to one hour, and used BTD maintaining
wR(∗,m)C or wT-R(∗,m, z)C to find all the solutions
to the problems. We follow the variable ordering im-
posed by the tree decomposition and use domain/degree
variable ordering heuristic within a cluster.

We conducted the experiments using three config-
urations. In the first configuration, BTD maintains
wR(∗,m)C during search enforced using ProcessQ. In
the second configuration it also maintains wR(∗,m)C,
but using ProcessMQ. In those two configurations,
we tried the values 2, 3, and 4 for m, and chose the
best result for each instance. In the third configuration,
BTD maintains wT-R(∗,m, z)C using ProcessMQ.
We tried the values 2, 3 and 4 for m and the values
5, 7 and 9 for z, and choose the best result.

We report the results for the three configurations in
Table 1. For each benchmark, we give the number of
instances, the average number of variables, and the av-
erage treewidth tw of our tree decomposition.

The next columns correspond to the three configu-
rations. For each benchmark the table has three rows.
On the first row the number of completed instances
is reported in each configuration. On the second and
third rows the average and the maximum times in sec-
onds are reported. The average and the maximum are
over the best results of each configuration per instance.
When no value is reported, it means the configuration
was excluded due to few or no instances solved for that
benchmark.

Observing the results we notice that the new algo-
rithm ProcessMQ improved the runtime for several
of the considered benchmarks. The improvements were
in the average and maximum time. Although the im-
provement of the average time per benchmark is not
very significant, the improvement in the maximum time
indicates that the benefits of the new algorithm are
visible for difficult problems that take more time to
solve. With the one hour time limit per run on an in-
stance, more instances were solved using ProcessMQ
in benchmarks rand-3-20-20, ukVg and wordsVg, while
ProcessQ helped to solve one more instance in bench-
mark lexVg.

The impact of wT-R(∗,m, z)C was most significant
for the aim-100 and aim-200 benchmarks. It helped
solve more instances with significant reductions in both
average and maximum times. This result indicates that

1htts://www.cril.univ-artois.fr/CPAI08/



Table 1: Performance on benchmark problems in terms of number of instances completed (#C), average time (tavg)
in seconds and the maximum time (tmax) in seconds.

Parameters ProcessQ ProcessMQ
Benchmark #inst #vars tw wR(*,b)C wR(*,b)C wT-R(*,b,b)C

aim-100 24 100 50.83
#C 21 21 24
tavg 128.72 127.60 6.73
tmax 1,595.39 1,728.64 95.05

aim-200 24 200 104.92
#C 17 17 22
tavg 246.35 252.48 238.99
tmax 3,352.54 3,452.98 1,540.94

dubois 13 98.08 3.00
#C 13 13 13
tavg 0.03 0.03 0
tmax 0.13 0.14 0.02

lexVg 57 129.00 82.00
#C 57 56 20
tavg 454.40 415.25
tmax 3,365.20 3,040.05

modifiedRenault 50 110.00 10.00
#C 50 50 50
tavg 20.39 21.23 39.82
tmax 365.62 378.58 991.83

ogdVg 59 134.00 85.00
#C 15 15 15
tavg 283.27 242.06 266.74
tmax 1,834.11 1,508.27 1,720.97

pret 8 105.00 4.00
#C 8 8 8
tavg 0.05 0.05 0.01
tmax 0.09 0.09 0.02

rand-10-20-10 20 20 13.00
#C 20 20 20
tavg 0.21 0.32 0.99
tmax 0.26 0.38 1.32

rand-3-20-20 50 20 13.00
#C 13 14 0
tavg 2,191.56 1,949.87
tmax 3,481.04 3,145.77

renault 2 101.00 9.00
#C 2 2 2
tavg 31.33 32.47 30.31
tmax 49.25 51.32 35.51

ssa 7 1,024.00 15.00
#C 9 9 9
tavg 42.75 47.75 56.74
tmax 190.75 222.37 274.2

travellingSalesman-20 15 61 20.00
#C 14 14 0
tavg 689.88 773.55
tmax 2,788.37 3,259.90

travellingSalesman-25 15 76 25.00
#C 4 4 0
tavg 271.24 272.27
tmax 393.46 382.88

ukVg 56 134.00 85.00
#C 15 17 17
tavg 484.98 452.22 443.55
tmax 2,800.58 2,533.19 2,450.08

wordsVg 50 134.00 85.00
#C 44 46 43
tavg 174.92 163.39 164.24
tmax 2,673.81 2,558.64 2,526.50

the cost of processing the additional relations is out-
weighed by the gain from the time spent on backtrack-
ing. For most of the other benchmarks, higher levels of
consistency were not useful, and in most cases the cost
of generating new relations was detrimental for the suc-

cessful completion of the process within the one hour
time limit or in many cases the memory was not suffi-
cient. Despite the limited success of wT-R(∗,m, z)C, we
believe that revising the parameters more intelligently,
we would be able to extract better results specially on



problems where low levels of consistency are not effec-
tive.

8 Conclusions and Future Work
In this work we presented a reformulation of the algo-
rithm presented in (Karakashian et al. 2010) for enforc-
ing the relational consistency property R(∗,m)C. We
also proposed a new relational consistency property T-
R(∗,m, z)C that is strictly stronger than R(∗,m)C and
is achieved by reformulating the CSP. The experimen-
tal results demonstrated the benefits of the new algo-
rithm and the consistency property on various bench-
mark problems. The results showed the importance
of choosing the right values for the parameters in T-
R(∗,m, z)C. This problem is beyond the scope of this
work.

In the future, we plan to study the choice of the pa-
rameters that control the consistency level. This choice
can be static by analyzing the problem and can also be
decided and updated dynamically during search.
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