
Practical Tractability of CSPs by Higher Level
Consistency and Tree Decomposition

Shant Karakashian, Robert Woodward, and Berthe Y. Choueiry

University of Nebraska-Lincoln
{shantk|rwoodwar|choueiry}@cse.unl.edu

Abstract. One fundamental research result in the area of Constraint
Processing (CP) is a condition that guarantees problem tractability by
relating the consistency level of a Constraint Satisfaction Problem (CSP)
to the structure of the problem. In our research, we propose to build
effective problem-solving strategies that exploit the above-mentioned re-
sult in practice. To this end, our investigations target two fundamental
mechanisms in CP: (1) Consistency properties and their algorithms and
(2) Backtrack search in a tree decomposition. In particular, we propose
a new consistency property whose level is controlled by a parameter,
and present algorithms for enforcing it. Then, we investigate strategies
for backtrack search that apply those algorithms in localized contexts
defined by a tree decomposition of the constraint network.

1 Introduction

Research in Constraint Processing (CP) has identified various islands of tractabil-
ity as classes of CSPs that are solvable in polynomial time in the size of the input.
We single out the tractability condition specified by a relationship between the
level of a consistency of a CSP and a structural parameter of the corresponding
constraint network such as the treewidth or the hypertree width. The larger the
width of the network is, the higher the level of consistency may need to be es-
tablished in order to guarantee backtrack-free search. This approach is hindered
in practice by two main difficulties: finding the treewidth or hypertree width
of a constraint network is an NP-hard task [1], and enforcing higher levels of
consistency may require the addition of constraints to the CSP, thus modifying
its structure and width parameters.

The question that we address in our research is: How close can we approach
in practice the tractability guaranteed by the relationship between the level of
consistency in a CSP and the width of its constraint network? We propose to
achieve “practical tractability” by (1) proposing new local consistency properties
whose level is controlled by a parameter and designing algorithms for enforcing
them that do not modify the structure of the constraint network, (2) enforcing
such consistency properties on the clusters of a tree decomposition of the CSP,
and (3) adding redundant constraints in the separators between clusters to boost
propagation and enhance communications between clusters.



The main algorithms that are used in practice for enforcing consistency con-
sider combinations of at most three variables or two relations. The consistency
properties proposed so far that apply to larger combinations of variables or con-
straints may in general require the addition of new constraints [2, 3]. Moreover,
different problems require different levels of consistency. For this reason, it be-
comes important to explore new properties whose level of consistency can be
controlled (i.e., parameterized consistency), but that do not modify the struc-
ture of the constraint network, and thus, do not increase its width.

The main techniques that exploit the structure of the constraint network for
solving the CSP use a tree-decomposition embedding of the constraint network.
Because finding the optimal decomposition is NP-Hard, heuristics are used to
find a ‘good’ decomposition such as join tree [4], hinge decomposition [5], and
hypertree decomposition [6]. Moreover, synthesizing and storing a global con-
straint on the separators is necessary to guarantee backtrack-free search, but it
is prohibitive in practice.

We propose to exploit the tree decomposition in the following problem-solving
operations: (1) Localize the application of the consistency algorithms to the
subproblems induced by the vertices of the tree decomposition; (2) Order the
constraint-propagation process along the branches of the tree while favoring the
most constrained paths; and (3) Enhance propagation by adding properly chosen
redundant constraints between connected tree-vertices.

This paper is structured as follows. In Section 2, we give some necessary back-
ground information. In Section 3, we present the relational consistency property
and outline two algorithms for enforcing it. In Section 4, we describe how we
exploit the tree decomposition. Finally, in Section 5 we present some preliminary
experimental results and conclude in Section 6. Preliminary results of parts of
our work have already appeared in [7, 8].

2 Background

A constraint satisfaction problem (CSP) is defined by (X ,D, C), where X is
a set of variables, D is a set of domains, and C is a set of constraints. Each
variable Ai∈X has a finite domain Di∈D, and is constrained by a subset of the
constraints in C. Each constraint Ci ∈ C is defined by a relation Ri specified
over the scope of the constraint, scope(Ci), which are the variables to which the
constraint applies, as a subset of the Cartesian product of the domains of those
variables. The arity of a constraint is the cardinality of its scope. A tuple ti∈Ri

is thus a combination of values for the variables in the scope of the constraint
that is either allowed (i.e., support) or forbidden (i.e., conflict). In this paper,
we consider only allowed tuples. A solution to the CSP is an assignment, to
each variable, of a value taken from its domain such that all the constraints are
satisfied. Solving a CSP consists in finding one or all solutions.

A CSP can be represented by several types of graphs: in the hypergraph of a
CSP, as shown in Fig. 1a, the vertices represent the variables of the CSP and the
hyperedges represent the scopes of the constraints. The primal graph of a CSP is



A B C 

D 

E 
F 

G 
R4 R5 

R2 R1 

R3 

(a)

A B 
C 

D 

E F 

G 

(b)

A,B,C 

A,E,F E,B 

B,D A,D,G 

A 

A 

A B 
D 

B 

B 
E 

(c)

{A,B,C,E},{R2,R3} 

{A,B,D},{R3 ,R5} {A,E,F},{R1} 

{A,D,G},{R4} 

C1 

C2 C3 

C4 

(d)

Fig. 1: (a) Hypergraph, (b) Primal graph, (c) Dual graph, (d) Tree decomposition

a graph whose vertices represent the variables and the edges connect every two
variables that appear in the scope of some constraint as shown in Fig. 1b. The
dual graph of a CSP is a graph whose vertices represent the constraints of the
CSP, and whose edges connect two vertices corresponding to constraints whose
scopes overlap as in Fig. 1c. The dual CSP, PD, is thus a binary CSP where:
(1) variables are the constraints of the original CSP; (2) the variables’ domains
are the tuples of the corresponding relations; and (3) the constraints enforce
equalities over the shared variables. A tree decomposition of a CSP is a tree
embedding of the constraint network of the CSP. The tree nodes are thus clusters
of variables and constraints. A tree decomposition must satisfy two conditions:
(1) each constraint appears in at least one cluster and the variables in its scope
must appear in this cluster, and (2) for every variable, the clusters where the
variable appears induce a connected subtree. Fig. 1d shows a tree decomposition
of the CSP in Fig. 1a. A separator of two adjacent clusters is the set of variables
in both clusters. A given tree decomposition is characterized by its treewidth,
which is the maximum number of variables in a cluster minus one.

3 Relational Consistency Property and Algorithms

We introduce the property R(∗,m)C as a relational consistency property for non-
binary CSPs [7, 8]. This property ensures that, given any set of m constraints,
every tuple in the relation of one of those m constraints can be extended to
all the variables in the union of the scopes of the constraints in an assignment
that simultaneously satisfies all the constraints. We present two algorithms for
enforcing this consistency property on a CSP; both algorithms are based on
solving by backtrack search the dual CSP induced by the m relations:

– PerTupleSearch considers each tuple in each one of the m relations and
ensures, by backtrack search, that it appears in a solution to the induced
dual CSP. Thus, it solves, in the worst case, as many satisfiability problems
as there are tuples in the m relations.

– AllSolSearch finds all the solutions of the induced dual CSP to determine
which tuples must be kept. It executes a single backtrack search but may
have to find, in the worst case, all the solutions of the induced CSP.



4 Relational Consistency on Tree Decomposition

We investigate the use of R(∗,m)C in the context of a tree decomposition for
the purpose of localizing the application of the consistency algorithms to the
subproblems induced by the vertices of the clusters, ordering the constraint-
propagation process along the branches of the tree, and enhancing propagation
by adding redundant constraints to the separators.

Localizing Relational Consistency: Instead of computing the combinations
of m constraints over the entire CSP, we propose to restrict ourselves to the
combinations computed within each cluster, thus reducing the number of com-
binations to be considered.

Ordering the Propagation: We consider two strategies to order the clusters in
which the consistency algorithm is applied. The first strategy follows the fixed
order of clusters given by the MaxCliques algorithm [9]. The second strat-
egy prioritizes the clusters by favoring those clusters whose children are most
constrained. We evaluate the constraintedness of a cluster by the ratio of the
removed tuples to the original tuples in its relations.

Redundancy at Separators: The application of R(∗,m)C to a set of relations
is always followed by a step where the filtered constraints are projected on the
domain of the variables. When applying R(∗,m)C individually to each cluster of
a tree decomposition, the effects of filtering in one cluster are transferred to the
adjacent cluster through the domains of the variables in the separator between
the two clusters. Enforcing R(∗,m)C does not require adding new constraints to
the CSP. However, synthesizing a global constraint at each separator improves
the ‘communication’ between clusters and guarantees backtrack-free search.

Synthesizing and storing those global constraints is typically prohibitive, es-
pecially in terms of space. For this reason, we propose to approximate the global
constraints by adding redundant constraints. The strategy that we adopt here
consists in adding the clusters’ constraints to the separator after projecting them
on the variables in the separator. In Section 6, we describe two other strategies.

5 Experimental Results

The experiments reported below evaluate some of the techniques described in this
paper. We generate a tree decomposition that is an adaptation of the the tree-
clustering technique of [4], by building the primal graph of the non-binary CSP,
triangulating it, then using the join tree of the maximal cliques of the resulting
triangulation. We add redundant constraints to the separators by projecting
the constraints in the cluster on the variables in the separator. We use the
PerTupleSearch algorithm localized to the clusters of a tree decomposition.
The parameter m of R(∗,m)C is set to the number of relations in a cluster,
and, thus, the consistency level enforced adapts locally to each cluster in the tree



Table 1: Comparing R(∗,m)C localized to the clusters with propagation orderings
Priority and MaxClique against GAC and maxRPWC. Averages are computed
over instances completed by all methods.

# Completed #BT Free Avg CPU in seconds Avg #NV

P
r
io
r
it
y

M
a
x
C
l
iq
u
e

G
A
C

m
a
x
R
P
W

C

P
r
io
r
it
y

M
a
x
C
l
iq
u
e

G
A
C

m
a
x
R
P
W

C

P
r
io
r
it
y

M
a
x
C
l
iq
u
e

G
A
C

m
a
x
R
P
W

C

P
r
io
r
it
y

M
a
x
C
l
iq
u
e

G
A
C

m
a
x
R
P
W

C

aim-100 24 20 21 15 16 15 16 1 1 18.66 15.82 509.02 479.67 103.36 103.36 10M 7M
aim-200 24 9 7 8 8 8 7 0 0 - - - - - - - -
aim-50 24 24 24 24 24 21 21 1 3 1.01 0.95 1.51 1.31 53.21 53.21 43K 31K

comp-25 50 45 45 10 10 44 43 0 0 821.32 1,124.00 719.61 866.17 45.29 45.29 1M 1M
comp-75 40 38 37 3 3 38 37 0 0 8.19 4.54 0.13 0.17 0.00 0.00 1.00 1.00
dag-rand 25 25 25 5 0 25 25 0 0 - - - - - - - -

ehi-85 100 91 10 74 55 91 10 0 0 417.65 450.23 369.07 663.08 0.00 0.00 86K 86K
ehi-90 100 98 7 55 44 98 7 0 0 383.21 539.02 0.64 0.91 0.00 0.00 10.00 10.00

modRenault 50 50 50 25 32 50 50 5 18 5.91 6.17 64.89 209.49 81.39 81.39 341K 1,213.30

decomposition. The propagation is ordered by the two strategies proposed in
Section 4. Thus, we use two configurations for R(∗,m)C and we refer to them
as MaxClique and Priority.

We compare the two configurations of R(∗,m)C against GAC2001 [10] and
maxRPWC [11]. The four consistency algorithms are integrated as full lookahead
strategies in a backtrack search using the domain/degree heuristic for dynamic
variable ordering. The nodes in the search tree correspond to instantiations of
the original variables of the CSP, and the count of node visits is the same for the
four compared techniques. The experiments are conducted on benchmarks from
the CSP Solver Competition1 that are difficult to solve using GAC. We imposed
a time limit of one hour per instance.

Table 1 gives the total number of instances in each benchmark, and the num-
ber of instances: solved within the time limit, and solved without backtracking.
On the right side of the table, the average CPU time and number of nodes visited
are given computed on the instances solved using the four algorithms.

We observe that R(∗,m)C is able to solve most instances in those bench-
marks without backtracking, thus achieving the practical tractability that we
are aiming at. The average numbers of node visits show that R(∗,m)C visits or-
ders of magnitude fewer nodes than GAC and maxRPWC. The impact of fewer
backtracking achieved by R(∗,m)C is reflected in the number of instances com-
pleted in each benchmark. Also, we notice that by using the Priority ordering
we are able to solve more instances than using the maxClique ordering.

6 Conclusion and Future Work

We propose a new local consistency property R(∗,m)C with algorithms for en-
forcing it by localizing the application of the algorithms to the clusters of a tree

1 http://www.cril.univ-artois.fr/CPAI08/



decomposition of a CSP. We also propose to modify the structure of the CSP
to enhance propagation without increasing the width of the constraint network.
We presented the results of our preliminary experiments comparing R(∗,m)C to
GAC and maxRPWC. The results indicate that we can achieve tractability in
practice on many instances by solving them almost without backtracking.

In the future, we will evaluate two other strategies for approximating the
global constraints on the separators: (1) adding binary constraints to the sepa-
rator by generating a constraint for every fill-in edge obtained by a triangulation
of the primal graph of the separator and (2) adding non-binary constraints to
the separator that cover the maximal cliques of a triangulation of the separa-
tor’s primal graph. Finally, we will evaluate our approach to count the number
of solutions of the CSP and compare it to the BTD [12].

Acknowledgments Experiments were conducted on the equipment of the Holland
Computing Center at the University of Nebraska-Lincoln. This research is supported
by NSF Grant No. RI-111795.

References

1. Arnborg, S.A., Corneil, D.G., Proskurowski, A.: Complexity of Finding Embed-
dings in a K-Tree. SIAM Journal on Algebraic Discrete Methods 8 (1987) 277–284

2. Freuder, E.C.: Synthesizing Constraint Expressions. Communications of the ACM
21 (11) (1978) 958–966

3. Dechter, R., van Beek, P.: Local and Global Relational Consistency. Theoretical
Computer Science 173(1) (1997) 283–308

4. Dechter, R., Pearl, J.: Tree Clustering for Constraint Networks. Artificial Intelli-
gence 38 (1989) 353–366

5. Cohen, D.A., Jeavons, P., Gyssens, M.: A unified theory of structural tractability
for constraint satisfaction problems. Journal of Computer and System Sciences
74(5) (2008) 721–743

6. Gottlob, G., Scarcello, F.: Hypertree decompositions: A survey. In: Proceedings
of the 26th International Symposium on Mathematical Foundations of Computer
Science (MFCS 01). (2001) 37–57

7. Karakashian, S., Woodward, R., Reeson, C., Choueiry, B.Y., Bessiere, C.: A First
Practical Algorithm for High Levels of Relational Consistency. In: Proceedings of
the 24th AAAI Conference on Artificial Intelligence (AAAI 10). (2010) 101–107

8. Karakashian, S., Woodward, R.J., Choueiry, B.Y., Bessiere, C.: Relational Con-
sistency by Constraint Filtering. In: Proceedings of the 25th ACM Symposium On
Applied Computing (ACM SAC 10). (2010) 2073–2074

9. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press
Inc., New York, NY (1980)

10. Bessiere, C., Régin, J.C., Yap, R.H., Zhang, Y.: An Optimal Coarse-Grained Arc
Consistency Algorithm. Artificial Intelligence 165(2) (2005) 165–185

11. Bessiere, C., Stergiou, K., Walsh, T.: Domain Filtering Consistencies for Non-
Binary Constraints. Artificial Intelligence 172 (2008) 800–822

12. Jégou, P., Terrioux, C.: Hybrid Backtracking Bounded by Tree-Decomposition of
Constraint Networks. Artificial Intelligence 146 (2003) 43–75


